1. Trang chủ
  2. » Giáo án - Bài giảng

Poly(butylene terephthalate) based novel achiral stationary phase investigated under supercritical fluid chromatography conditions

8 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Poly(butylene Terephthalate) Based Novel Achiral Stationary Phase Investigated Under Supercritical Fluid Chromatography Conditions
Tác giả Kanji Nagai, Tohru Shibata, Satoshi Shinkura, Atsushi Ohnishi
Trường học Daicel Corporation, CPI Company, Life Science Development Center, Innovation Park, 1239, Shinzaike, Aboshi-ku, Himeji, Hyogo, Japan
Chuyên ngành Analytical Chemistry
Thể loại Research Article
Năm xuất bản 2018
Thành phố Himeji
Định dạng
Số trang 8
Dung lượng 1,56 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Poly(butylene terephthalate) based novel stationary phase (SP), composed of planar aromatic phenyl group together with ester group monomer units, was designed for supercritical fluid chromatography (SFC) use. As expected from its structure, this phase shows planarity recognition of isomeric aromatics and closely similar compounds.

Trang 1

jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a

DAICEL Corporation, CPI Company, Life Science Development Center, Innovation Park, 1239, Shinzaike, Aboshi-ku, Himeji, Hyogo, 671-1283, Japan

Article history:

Received 26 January 2018

Received in revised form 13 March 2018

Accepted 15 March 2018

Available online 17 March 2018

Keywords:

Supercritical fluid chromatography

Stationary phase

Polymer

Ligand

Poly(butylene terephthalate), PBT

Selector

a b s t r a c t Poly(butyleneterephthalate)basednovelstationaryphase(SP),composedofplanararomaticphenyl grouptogetherwithestergroupmonomerunits,wasdesignedforsupercriticalfluidchromatography (SFC)use.Asexpectedfromitsstructure,thisphaseshowsplanarityrecognitionofisomericaromatics andcloselysimilarcompounds.Interestingly,formostanalytes,theretentionbehaviorofthisSPis sig-nificantlydistinctfromthatofthe2-ethylpyridinebasedSPswhichisamongthemostwell-knownSFC dedicatedphases.Althoughthepoly(butyleneterephthalate)iscoatedonsilicagel,theperformanceof thecolumndidnotchangebyusingextendedrangemodifierssuchasTHF,dichloromethaneorethyl acetateandcolumnrobustnesswasconfirmedbycycledurabilitytesting

©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/)

1 Introduction

Supercriticalfluidchromatography(SFC)isimplementedtoday

asroutinetechniqueinmanylaboratoriesandarisesstrong

sci-entific and practical interest [1 SFC uses pressurized carbon

dioxide(CO2)withmisciblepolarorganicsolvents(modifier)as

amobilephaseandhasbecomeapowerfulseparationtechnique

complementary to conventional highperformance liquid

chro-matography(HPLC)andgaschromatography(GC)[2–10].Inthe

earlydevelopmentsofthetechnique,SFCwasstronglydrivenby

theenantioseparationfieldbenefittingfromthealreadyexisting

chiralstationaryphases(CSPs),particularlyatpreparativescalein

pharmaceuticalindustry[11–18].Recently,SFCexpandedalsoin

theachiralseparationfield,usingachiralphases,butevenapplying

theCSPsaspowerfultoolsinseparationofcloselyrelatedsample

impuritiesormolecules[19,20]

ThemobilephaseinSFChaslowviscosityandhighdiffusivity,

whichmakesitparticularlyadaptedforfastflowanalysis

Further-more,SFCisregardedasanenvironmentallyfriendlyseparation

technique because it uses nontoxic recycled CO2 and the total

amountoforganicsolventsissmallerthaninconventionalHPLC

Thishighthroughput chromatographicperformance, as wellas

∗ Corresponding author.

E-mail address: tr shibata@jp.daicel.com (T Shibata).

“green”aspect,makeSFCveryattractivefornumerousapplications [21–31]

The retention and separation characteristics in SFC mainly dependona combinationbetweenmobilephaseandstationary phase(SP)[6,32–34]Thechemicaldiversityofthecurrently avail-ableSPshasbeensignificantlyextended,benefitingfromthelarge varietyofcommerciallyavailableHPLCSPs(e.g.reversephase, nor-malphase,and/orHILIC)thatcanbealsousedinSFCmode.Besides thistrend,somecolumnmanufacturersandresearchgroupshave originallydevelopedSFCdedicatedstationaryphases.One well-knownSPdesigned specificallyfor achiralSFCseparationis the 2-ethylpyridine(2-EP)bondedsilicaphase.This2-EPSPoffersgood peak shapes,especially forbasic compounds,even withoutany additives[35]

OthernovelachiralSPsdedicatedtoSFChavebeendeveloped [36–40], however,most of them consistedof a low-molecular-weightligand,coatedorcovalentlyattachedontoasolidsupport (e.g.silicagel).Incontrast,onlyfewpolymerictypephaseshave beendescribedsofarforapplicationsintheachiralSFC separa-tionfield.Suchpolymericphasesareexpectedtointeractthrough multipleconcertedmechanismswiththeanalytes[40]

Anotherviewpointiswhatkindofmajorinteractionshouldbe embeddedinaSP.WhileSPswithavarietyofinteractiontypesare neededofcourse,whatarethoserelativelyunmet?Thedesignof newphasesmayhavetostartbydefiningwhicharethe interac-tiontypesneededandcombinedtomakeanefficientSP,butalso whichinteractionmechanismsarerelativelyunmetinthealready

https://doi.org/10.1016/j.chroma.2018.03.032

0021-9673/© 2018 The Authors Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).

Trang 2

Fig 1.Structure of poly(butylene terephthalate) or PBT-based selector of the

col-umn DCpak PBT.

existingSPs.In thislight,thesystematicanalysisofinteractions

inavarietyofcommerciallyavailableSPsunderSFCconditions,as

investigatedbyWestetal.,wouldrepresentaverysuggestive

infor-mation[41–43].Accordingtotheirdiagrams,hydrogen-bonding

andvanderWaalsinteractionsaremoredenselycoveredbyalready

existingphases,whereasdipolarandaromatic(␲)interactionsare

lessrepresented[43]

Basedontheaboveconsideration,whenlookingforinnovative

phases,wefocusedonapolymerwithadipolargroupwith/without

anaromaticgroupinorclosetoitsmainchain.Amongmany

poly-mersevaluated,poly(butyleneterephthalate),wellknownasPBT,

waschosenasanovelselectorconsideringitsmolecular

recogni-tionabilityandpeakefficiency[44].Itsinsolubilityinmostsolvents

andremarkablechemicalstabilitywerealsopositivemerits

sup-portingtheselectorchoiceforcolumncommerciallaunch(Fig.1)

Inthepresentstudy,somefeaturesandapplicationsofthisSP

underSFCconditionsaredescribed

2 Experimental

2.1 Chemicals

ThemodifierusedinthisstudywasJapaneseIndustrialStandard

specialgrademethanol(MeOH)obtainedfromNacalaiTesqueInc

(Kyoto,Japan).Carbondioxideofindustrialgrade(over99.5%)was

purchasedfromTatsumiIndustryCo.,Ltd.(Hyogo,Japan)

o-Terphenyl,m-terphenyl,p-terphenyl,3,4-dihydrocoumarin,

coumarin, 6-methylcoumarin, 7-methylcoumarin, dimethyl

phthalate,dimethylisophthalate, dimethylterephthalate,

triph-enylene, cis-stilbene, trans-stilbene, 2-methylbenzophenone,

3-methylbenzophenone, 4-methylbenzophenone, 2

-hydroxyflavanone, 3-hydroxyflavanone, 4-hydroxyflavanone,

theobromine, phenanthrene, and pyrene were

pur-chased from Tokyo Chemical Industry Co (Tokyo,

Japan) 1,3,5-Tri-tert-butylbenzene, 2-acetylanthracene,

9-acetylanthracene, 2-acetylphenanthrene, 3-acetylphenanthrene,

9-acetylphenanthrene, and paraxanthine were purchased from

Sigma-AldrichCorporation(St.Louis,MO,USA).Naphthacenewas

purchased fromNacalaiTesque Inc 2-Propanol(IPA),chrysene,

estrone,estradiol,estriol,caffeine,theophylline,tetrahydrofuran

(THF),dichloromethane,andethylacetatewerepurchasedfrom

WakoPureChemicalIndustries(Osaka,Japan).n-Hexane(nHex)

waspurchasedfromKantoChemicalCo.(Tokyo,Japan)

2.2 Instrumentationandchromatographicconditions

DCpakPBTcolumn(initiallylaunchedasDCpakSFC-A),sized

150mm×4.6mm (i.d.), was supplied from DAICELCorporation

(Tokyo,Japan),whichiscomposedofPBT-coated5␮msilica

par-ticle A 2-ethylpyridine (2-EP) column of 5␮m particle, sized

150mm×4.6mm(i.d.),waspurchasedfromWatersCorporation

(Milford,MA,USA).TheSFCinstrumentusedinthisstudyis

Nexera-UC supplied by Shimadzu Corporation(Kyoto, Japan) equipped

withaCO2 pump, amodifier pump,a vacuumdegasser,a

col-umnoven,amultiplewavelengthUVdetector,andautomatedback

software(V5.89)wasusedforsystemcontrolanddataacquisition Totalflowratewasfixedat3.0mL/min,columntemperature wassetat40◦C,andtheautomatedbackpressureregulator(ABPR) wassetto15.0MPa,unlessotherwisenoted.Otherconditions,such

asmodifier,sampleconcentration,injectionvolume,anddetection wavelengtharedescribedinthefigures

TheTharSFCinstrumentsuppliedbyWatersCorporationwas usedforSection3.3dealingwiththeorthogonalselectivityofthe twocolumnsandSection3.4dealingwiththemodifiereffect

2.3 Dataanalysis

Relativeretentionfactor(k)wascalculatedwiththeequation below

k= (V/V0)−1, (1) where V is the elution volume of an analyte and V0 is the column void volume V0 was estimated by injecting 1,3,5-tri-tert-butylbenzene as a non-retained marker conducted as an independentanalysisofeachsampleinjection

2.4 Dipolemomentcalculations Dipole moment calculations were conducted using semi-empirical molecular orbital methodwith PM6 implemented in SCIGESSsoftware(version2.3,FujitsuLtd.,Tokyo,Japan)[45]

3 Results and discussion

3.1 Planarityrecognition Basedonitsstructuralfeatures,thenewPBTselectorcomposed

ofnon-polararomaticphenylgrouptogetherwithestergroupunits wasexpectedtointeractwitharomaticcompounds.Inorderto con-firmthispoint,terphenylisomers(1–3)areinvestigated,whichare regardedasmolecularplanarityindicatorsinHPLC[46,47]andSFC [48].Compound1deviatesfromplanarityduetothestrongsteric repulsionoftwophenylringslocatedinortho-position,andthis sterichindrancediminishesfor2and3(inthissequentialorder)

Fig.2showstheSFCchromatogramsof1–3byusingthePBT-based column(Fig.2A),comparedtothe2-EPSP(Fig.2B)underisocratic conditions.Thestrongertheplanaritycharacteroftheanalyte,the longerretentionwasobserved onthenewcolumn Incontrast,

noresolutionbetween2and3wasachievedonthe2-EPcolumn (Fig.2B).Thisplanarityrecognitionmaybeattributedtoplanarand rigidPBTbackbone

3.2 Molecularshaperecognition

Fig.3showsthechromatogramsofcoumarin(5), itsdihydro form(4),andmethylsubstitutedform(6and7).Compound4eluted fasterthan5,probablybecausedihydro4hasless␲-electronsthan

5,resultinginaweakerinteractionbetweenanalyteandSP.The PBT-derivedselectorcanrecognizetheminordifferenceofmethyl groupposition(6and7),whereasonthe2-EPcolumn,coumarin5

anditsmethylsubstitutedoneselutedalmostatthesametime

Fig.4AandBshowstheSFCchromatogramsofthree plasticiz-ers,dimethylphthalate(8),dimethylisophthalate(9),anddimethyl terephthalate(10)onbothcolumns.ByusingtheDCpakcolumn,

8elutedfirst,followedby9and10(Fig.4A).Dipole momentof

8, 9,and10is2.98,1.60,and0.01,respectively,which is calcu-latedbyusingSCIGESSsoftware.Thus,thesmallerpolarizationof thesample,thelongertheretentiontimetendstobe.Onthe

2-EPcolumn,theelutionorderistotallyinverse(i.e.10elutedfirst,

Trang 3

Fig 2.SFC chromatograms of terphenyl isomers on (A) DCpak PBT and (B) 2-EP SPs.

Modifier, MeOH (isocratic conditions, 3%); temperature, 40◦C; ABPR, 15 MPa; flow

rate, 3.0 mL/min; UV detection, 254 nm.

followedby9and8,seeFig.4B).Therelationshipbetweendipole

momentsandretentionfactorsbyusingtwocolumnsaredisplayed

inSupplementalMaterial(TableS1)

Estron(11),estradiol(12),andestriol(13)arenaturalestrogenic

hormones,whichhavealmostsameskeletonwithdifferentnumber

ofhydroxylgroups.Compound11hasonehydroxylgroup,12has

two,and13hasthree.InteractingwiththePBTselector,polar13

elutedfirst,followedby12and11(Fig.4C).Incontrast,byusing

2-EP,less-polar11elutedfirst,thenfollowedby12and13(Fig.4D)

ThisresultindicatesthatDCpakPBTcanstronglyretainlesspolar

samples,whereasitwillshowlessretentionformorepolarsamples

(oppositetothe2-EPobservations).Theresultsdisplayedinthis

sectionsuggeststhehighorthogonalityofthePBTandthe2-EP

derivedSPs

Inordertodiscussthecharacteristicmolecularshape

recogni-tionbehaviorofthenewcolumn,wethenanalyzednaphthacene

(14),chrysene(15),andtriphenylene(16)underisocratic

condi-tions.TheseC2orC3symmetricpolycyclicaromatichydrocarbons

(PAHs)havethesamenumberofaromaticringsand␲-electrons

butdifferentmolecularshape,whichareoftenusedasmolecular

shaperecognitionindicators(Fig.5).Wiseetal.proposed

length-to-breadth(L/B)ratiofordescribingtwodimensionalaspectratio

of suchPAHs[49] The smallerL/B ratioindicatesthe disk-like

molecule.Indeed,L/Bratioof14, 15,and16is1.89,1.72,and1.12,

respectively.OnDCpakPBT,disk-like16elutedfirst,followedby

15,and14withalargeaspectratioelutedlastly(Fig.5A).Contrary

tothis,byusing2-EP,14withalargeaspectratioelutedfirst,

fol-lowedby15,and16elutedlastly(Fig.5B).Theretentionfactor(k)of

thesePAHsonthetwocolumnsissummarizedinTableS2in

Sup-plementalMaterial.Theirselectivitytrendsareorthogonalagain.It

isclearlyseenthatthePBTselectortendstoretainthelinearPAH

Fig 3.SFC chromatograms of coumarin derivatives on (A) DCpak PBT and (B) 2-EP SPs Modifier, MeOH (isocratic conditions, 2%); temperature, 40◦C; ABPR, 15 MPa; flow rate, 3.0 mL/min; UV detection, 220 nm.

withlargeaspectratio,and2-EPtendstoretaindisk-likePAHwith smallaspectratio

3.3 Orthogonalityinvestigations

Asdescribedinprevioussections,theseparationbehaviorof twoinvestigatedcolumnswassignificantlydistinct.Therefore,they wereexpectedtodisplaycomplementaryselectivity,i.e orthogo-nalselectivity.Toobtainadeepinsightintoorthogonalityaspects,

wethencomparedtheirretentionfactorsmeasuredunderisocratic conditions byusingcommercially availableneutral and slightly basic23 samples.Thesetest compoundsare classedintoseven differentisomericorcloselysimilarsamplefamilies.Fig.6shows thedoublelogarithmicplotsofkobtainedbytwocolumns.The detailofsamplesandretentionfactorsaresummarizedinTable S3inSupplementalMaterial.Asexpected,theplotswerewell dis-persed.Indeed,theirPearson’scorrelationcoefficient(R2)was0.62, indicatingthereisnotstrongcorrelationbetweenthem

3.4 Modifiereffect ConsideringthatthePBTselectorwascoatedonsilicagel,one mayfear“columndamage”ofselectorbyusingextendedsolvent choices,suchasTHF,dichloromethane(CH2Cl2),orethylacetate (EtOAc) We then examined the stability of retention by using regioselectiveacetylated anthracene(17, 18)and phenanthrene

(19–21)asanalytes

Trang 4

Fig 4.(A, B) SFC chromatograms of plasticizers (phthalates) and (C, D) estrogenic hormones on (A, C) DCpak PBT and (B, D) 2-EP SPs (A, B) Modifier, MeOH (isocratic conditions, 1%); temperature, 40◦C; ABPR, 15 MPa; flow rate, 3.0 mL/min; UV detection, 230 nm (C, D) Modifier, MeOH (isocratic conditions, 30%); temperature, 40◦C; ABPR,

15 MPa; flow rate, 3.0 mL/min; UV detection, 210 nm.

Fig 5. SFC Chromatograms of C 2 or C 3 symmetric polycyclic aromatic hydrocarbons (PAHs) on (A) DCpak PBT and (B) 2-EP SPs Modifier, MeOH (isocratic conditions, 25%); temperature, 40 ◦ C; ABPR, 15 MPa; flow rate, 3.0 mL/min; UV detection, 254 nm.

Fig.7AshowstheSFCchromatogramoffiveanalytesmixture

with10%ofMeOH.Althoughsomepeakswereoverlapped,these

peakselutedwithoutheavypeaktailing.Afteranalysis,the

mod-ifier wasgraduallychanged by gradientprogram The program startedafter1minholdwith5%ofMeOH,lineargradientramped

upto30%ofMeOHover20min,followedby39minholdat30%

Trang 5

Fig 6. Double logarithmic plots of retention factor (k) obtained with DCpak PBT

and 2-EP SPs Filled circles (䊉), 2-methylbenzophenone, 3-methylbenzophenone,

and 4-methylbenzophenone; open circles (), cis-stilbene and trans-stilbene;

filled squares (䊏), o-terphenyl, m-terphenyl, p-terphenyl, and triphenylene; filled

triangles (), 2-acetylanthracene, 9-acetylanthracene, 2-acetylphenanthrene,

3-acetylphenanthrene, and 9-acetylphenanthrene; open diamonds (♦), caffeine,

theo-phylline, theobromine, and paraxanthine; filled diamonds (), 2  -hydroxyflavanone,

3-hydroxyflavanone, and 4-hydroxyflavanone; open triangles (), hydrocortisone

and prednisolone Modifier, MeOH (isocratic conditions, 5%); temperature, 40◦C;

ABPR, 15 MPa; flow rate, 4.0 mL/min.

of MeOH Afterthe gradient rinsingprogram wasfinished, the sameacetylated PAHmixturewasinjectedunderisocratic con-dition(CO2/MeOH=90/10).Fig.7BshowsitsSFCchromatogram with10%ofMeOH,andretentiontimeandpeaksymmetrywere essentiallyunchanged.Then,therinsingmodifierwaschangedto THF/MeOH=5/1,thesamegradientcyclewasrepeated,and the sameacetylatedPAH mixturewasevaluated.Itshouldbe men-tionedthatnounidentifiedpeakwasobservedduringthisrinsing process.Fig.7 shows theSFCchromatogramof thesame mix-tureunder10%ofMeOH.Again,unidentifiedpeaksdidnotappear duringthegradientprogram,andthechromatogramwasalmost sameasoriginalone.Thisgradientrinsingprogramwasrepeatedby usingCH2Cl2/MeOH=5/1asmodifier,andthesamesamplemixture wasanalyzed,whose chromatogramwasalmostsame(Fig.7D) Finally,thisprocedurewasrunoverbyEtOAc/EtOH=5/1,andthe samesamplemixturewasanalyzedwithnochangeintheresulting chromatogram(Fig.7E)

Accordingtotheseexperiments, nosignofdegradation was observedduringthegradientprocessorthechromatographic test-ing,whichsuggestthatnocolumndamagewasobservedbypassing throughtheextendedrangemodifiersequence.ThePBTselector doesnotdissolveinmanyorganicsolvents,whichenabledusto usealmostallorganicsolventsthoughitwascoatedonsilicagel

Fig 7.SFC chromatograms of acetylated anthracene(17, 18)and phenanthrene(19–21)on DCpak PBT SP by passing through various modifiers Chromatographic conditions

Trang 6

Fig 8. (A) Cycle dependent SFC chromatograms and (B) cycle versus retention factors of PAHs on DCpak PBT column Modifier; MeOH (isocratic conditions, 25%); temperature,

40◦C; ABPR, 15 MPa; total flow rate, 3 mL/min; UV detection, 230 nm; sample concentration, 0.2 mg/mL in nHex/THF = 9/1; injection volume,1 ␮L.

3.5 Cycledurabilitytest

Toconfirmthecycledurability,threePAHs,phenanthrene(22),

pyrene(23),andtriphenylene(16)wereusedasanalytes,under

isocraticconditions.Thesameexperimentwasrunover80cycles

Thistestwasnotperformedwiththeaimofcoveringmethod

vali-dationparameters,buttoconfirmthelackofsolubilityofthecoated

selector.Anyselectorlossunderoperatingconditionswouldlead

tochangeswiththeappliedprotocol

Fig.8A showstheSFC chromatogramofthefirstinjectionof

threePAHsonthecolumn,wherethethreepeakswerewell

sep-arated.Thechromatogramsafter20,40,60,and80cyclesarealso

showninFig.8A,andtheretentiontimeofthesesamplesnever

changeduntilthe80cycles

Fig.8Bshowscycleversustheirretentionfactors(k)and

con-firmsthecolumnstabilityincycledurabilitytestattributedbythe

macromolecularligand

4 Conclusions

AnovelPBTbasedstationaryphasewasdesignedandconfirmed

asversatiletoolforSFCuse.ThisSPshowscharacteristicplanarity

recognitionofisomericPAHsandstructurallyrelatedanalytessuch

ascoumarinderivatives,phthalateplasticizers,andestrogenic

hor-mones For mostcompounds, theretention behavior of this SP wasfoundtobesignificantlydistinctfromthatofthe2-EPbased

SP,whichindicatetheorthogonalretentionrelationshipbetween them.Itsstability ofthePBT selectortowardsanextended sol-ventrangeandthecycledurabilityofthecolumnintheoperating conditionswerealsoconfirmed

Theseresultsdemonstratedthatsyntheticpolymersmightbe promisingcandidatesas selectorsfor achiralseparationsin SFC mode Indeed, this column was used as SFC column screening formethoddevelopmentinthepharmaceuticalindustry(seeFig 10.8inRef.[1]).Furtherinvestigationsdealingwithapplications

ofthisnewSPindifferentchromatographicmodesarecurrently

inprogress.Thedesignandscreeningofothersyntheticpolymer basedligandsarealsointhescopeofourresearchteam

Acknowledgments

Theauthors wish tothank Dr.Pilar Franco and Tong Zhang

inChiralTechnologiesEuropeS.A.S.forvaluablediscussions.The authorsalsoappreciateDr.MasashiIwayamainDAICEL Corpora-tionfordipolemomentcalculations

Thisresearchdidnotreceiveanyspecificgrantfromfunding agenciesinthepublic,commercial,ornot-for-profitsectors

Trang 7

Appendix A Supplementary data

Supplementarydataassociatedwiththisarticlecanbefound,

intheonlineversion,athttps://doi.org/10.1016/j.chroma.2018.03

032

References

[1] C.F Poole (Ed.), Supercritical Fluid Chromatography (Handbooks in Separation

Science), Elsevier, 2017.

[2] T.A Berger, Separation of polar solutes by packed column supercritical fluid

chromatography, J Chromatogr A 785 (1997) 3–33, http://dx.doi.org/10.

1016/S0021-9673(97)00849-2

[3] G Guiochon, A Tarafder, Fundamental challenges and opportunities for

preparative supercritical fluid chromatography, J Chromatogr A 1218 (2011)

1037–1114, http://dx.doi.org/10.1016/j.chroma.2010.12.047

[4] M Saito, History of supercritical fluid chromatography: instrumental

development, J Biosci Bioeng 115 (2013) 590–599, http://dx.doi.org/10.

1016/j.jbiosc.2012.12.008

[5] L.T Taylor, Supercritical fluid chromatography, Anal Chem 82 (2010)

4925–4935, http://dx.doi.org/10.1021/ac800482d

[6] E Lesellier, C West, The many faces of packed column supercritical fluid

chromatography – a critical review, J Chromatogr A 1382 (2015) 2–46,

http://dx.doi.org/10.1016/j.chroma.2014.12.083

[7] V Desfontaine, D Guillarme, E Francotte, L Nováková, Supercritical fluid

chromatography in pharmaceutical analysis, J Pharm Biomed Anal 113

(2015) 56–71, http://dx.doi.org/10.1016/j.jpba.2015.03.007

[8] S Fekete, J.L Veuthey, D Guillarme, Comparison of the most recent

chromatographic approaches applied for fast and high resolution separations:

theory and practice, J Chromatogr A 1408 (2015) 1–14, http://dx.doi.org/10.

1016/j.chroma.2015.07.014

[9] A Tarafder, Metamorphosis of supercritical fluid chromatography to SFC: an

Overview, TrAC Trends Anal Chem 81 (2016) 3–10, http://dx.doi.org/10.

1016/j.trac.2016.01.002

[10] E Lemasson, S Bertin, C West, Use and practice of achiral and chiral

supercritical fluid chromatography in pharmaceutical analysis and

purification, J Sep Sci 39 (2016) 212–233, http://dx.doi.org/10.1002/jssc.

201501062

[11] G Terfloth, Enantioseparations in super- and subcritical fluid

chromatography, J Chromatogr A 906 (2001) 301–307, http://dx.doi.org/10.

1016/S0021-9673(00)00952-3

[12] G.B Cox, Enantioselective supercritical fluid chromatography using Daicel’s

platinum series polysaccharide-based columns, in: LC-GC North-America

Appl Noteb., 2007, 31.

[13] L Miller, Preparative enantioseparations using supercritical fluid

chromatography, J Chromatogr A 1250 (2012) 250–255, http://dx.doi.org/10.

1016/j.chroma.2012.05.025

[14] P Franco, T Zhang, Common screening approaches for efficient analytical

method development in LC and SFC on columns packed with immobilized

polysaccharide-derived chiral stationary phases, in: G.K.E Scriba (Ed.), Chiral

Sep Methods Protoc., 2nd ed., Humana Press, Totowa, NJ, 2013, pp 113–126,

http://dx.doi.org/10.1007/978-1-62703-263-6

[15] J Lee, J.T Lee, W.L Watts, J Barendt, T.Q Yan, Y Huang, F Riley, M Hardink, J.

Bradow, P Franco, On the method development of immobilized

polysaccharide chiral stationary phases in supercritical fluid chromatography

using an extended range of modifiers, J Chromatogr A 1374 (2014) 238–246,

http://dx.doi.org/10.1016/j.chroma.2014.11.044

[16] D.C Patel, M.F Wahab, D.W Armstrong, Z.S Breitbach, Advances in

high-throughput and high-efficiency chiral liquid chromatographic

separations, J Chromatogr A 1467 (2016) 2–18, http://dx.doi.org/10.1016/j.

chroma.2016.07.040

[17] S Khater, M.A Lozac’h, I Adam, E Francotte, C West, Comparison of liquid

and supercritical fluid chromatography mobile phases for enantioselective

separations on polysaccharide stationary phases, J Chromatogr A 1467

(2016) 463–472, http://dx.doi.org/10.1016/j.chroma.2016.06.060

[18] K Zawatzky, M Biba, E.L Regalado, C.J Welch, MISER chiral supercritical fluid

chromatography for high throughput analysis of enantiopurity, J Chromatogr.

A 1429 (2016) 374–379, http://dx.doi.org/10.1016/j.chroma.2015.12.057

[19] E.L Regalado, C.J Welch, Separation of achiral analytes using supercritical

fluid chromatography with chiral stationary phases, TrAC Trends Anal Chem.

67 (2015) 74–81, http://dx.doi.org/10.1016/j.trac.2015.01.004

[20] T Shibata, S Shinkura, A Ohnishi, K Ueda, Achiral molecular recognition of

aromatic position isomers by polysaccharide-based CSPs in relation to chiral

recognition, Molecules 22 (2017) 38, http://dx.doi.org/10.3390/

molecules22010038

[21] L.T Taylor, Packed column supercritical fluid chromatography of hydrophilic

analytes via water-rich modifiers, J Chromatogr A 1250 (2012) 196–204,

http://dx.doi.org/10.1016/j.chroma.2012.02.037

[22] C.Y Kong, T Funazukuri, S Kagei, G Wang, F Lu, T Sako, Applications of the

chromatographic impulse response method in supercritical fluid

chromatography, J Chromatogr A 1250 (2012) 141–156, http://dx.doi.org/10.

[23] J.L Bernal, M.T Martín, L Toribio, Supercritical fluid chromatography in food analysis, J Chromatogr A 1313 (2013) 24–36, http://dx.doi.org/10.1016/j chroma.2013.07.022

[24] K Taguchi, E Fukusaki, T Bamba, Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography, J Chromatogr.

A 1362 (2014) 270–277, http://dx.doi.org/10.1016/j.chroma.2014.08.003 [25] T Yamada, Y Nagasawa, K Taguchi, E Fukusaki, T Bamba, 13 – polar lipid profiling by supercritical fluid chromatography/mass spectrometry method, in: M.U Ahmad, X Xu (Eds.), Polar Lipids, Elsevier, 2015, pp 439–462, http:// dx.doi.org/10.1016/B978-1-63067-044-3.50017-0

[26] M Ishibashi, Y Izumi, M Sakai, T Ando, E Fukusaki, T Bamba, High-throughput simultaneous analysis of pesticides by supercritical fluid chromatography coupled with high-resolution mass spectrometry, J Agric Food Chem 63 (2015) 4457–4463, http://dx.doi.org/10.1021/jf5056248 [27] A Grand-Guillaume Perrenoud, D Guillarme, J Boccard, J.L Veuthey, D Barron, S Moco, Ultra-high performance supercritical fluid chromatography coupled with quadrupole-time-of-flight mass spectrometry as a performing tool for bioactive analysis, J Chromatogr A 1450 (2016) 101–111, http://dx doi.org/10.1016/j.chroma.2016.04.053

[28] H Segawa, Y.T Iwata, T Yamamuro, K Kuwayama, K Tsujikawa, T Kanamori,

H Inoue, Differentiation of ring-substituted regioisomers of amphetamine and methamphetamine by supercritical fluid chromatography, Drug Test Anal 9 (2017) 389–398, http://dx.doi.org/10.1002/dta.2040

[29] K Ty´skiewicz, A D ˛ebczak, R Gieysztor, T Szymczak, E Rój, Determination of fat- and water-soluble vitamins by supercritical fluid chromatography: a review, J Sep Sci 41 (2018) 336–350, http://dx.doi.org/10.1002/jssc.

201700598 [30] G.F Pirrone, R.M Mathew, A.A Makarov, F Bernardoni, A Klapars, R Hartman, J Limanto, E.L Regalado, Supercritical fluid

chromatography-photodiode array detection-electrospray ionization mass spectrometry as a framework for impurity fate mapping in the development and manufacture of drug substances, J Chromatogr B 1080 (2018) 42–49,

http://dx.doi.org/10.1016/j.jchromb.2018.02.006 [31] C West, E Lemasson, S Bertin, P Hennig, E Lesellier, Interest of achiral-achiral tandem columns for impurity profiling of synthetic drugs with supercritical fluid chromatography, J Chromatogr A 1534 (2018) 161–169,

http://dx.doi.org/10.1016/j.chroma.2017.12.061 [32] C.F Poole, Stationary phases for packed-column supercritical fluid chromatography, J Chromatogr A 1250 (2012) 157–171, http://dx.doi.org/10 1016/j.chroma.2011.12.040

[33] A Grand-Guillaume Perrenoud, J.L Veuthey, D Guillarme, The use of columns packed with sub-2 um particles in supercritical fluid chromatography, TrAC Trends Anal Chem 63 (2014) 44–54, http://dx.doi.org/10.1016/j.trac.2014.06.

023 [34] C Galea, D Mangelings, Y Vander Heyden, Characterization and classification

of stationary phases in HPLC and SFC – a review, Anal Chim Acta 886 (2015) 1–15, http://dx.doi.org/10.1016/j.aca.2015.04.009

[35] A Grand-Guillaume Perrenoud, J Boccard, J.L Veuthey, D Guillarme, Analysis

of basic compounds by supercritical fluid chromatography: attempts to improve peak shape and maintain mass spectrometry compatibility, J Chromatogr A 1262 (2012) 205–213, http://dx.doi.org/10.1016/j.chroma 2012.08.091

[36] R McClain, M.H Hyun, Y Li, C.J Welch, Design, synthesis and evaluation of stationary phases for improved achiral supercritical fluid chromatography separations, J Chromatogr A 1302 (2013) 163–173, http://dx.doi.org/10 1016/j.chroma.2013.06.038

[37] J Smuts, E Wanigasekara, D.W Armstrong, Comparison of stationary phases for packed column supercritical fluid chromatography based upon ionic liquid motifs: a study of cation and anion effects, Anal Bioanal Chem 400 (2011) 435–447, http://dx.doi.org/10.1007/s00216-011-4767-z

[38] F.M Chou, W.T Wang, G.T Wei, Using subcritical/supercritical fluid chromatography to separate acidic, basic, and neutral compounds over an ionic liquid-functionalized stationary phase, J Chromatogr A 1216 (2009) 3594–3599, http://dx.doi.org/10.1016/j.chroma.2009.02.057

[39] M Dunkle, C West, A Pereira, S Van Der Plas, E Lesellier, Synthesis of stationary phases containing pyridine, phenol, aniline and morpholine via click chemistry and their characterization and evaluation in supercritical fluid chromatography, Sci Chromatogr 6 (2014) 85–103, http://dx.doi.org/10 4322/sc.2014.023

[40] C.G.A da Silva, C.H Collins, E Lesellier, C West, Characterization of stationary phases based on polysiloxanes thermally immobilized onto silica and metalized silica using supercritical fluid chromatography with the solvation parameter model, J Chromatogr A 1315 (2013) 176–187, http://dx.doi.org/ 10.1016/j.chroma.2013.09.055

[41] C West, E Lesellier, Chemometric methods to classify stationary phases for achiral packed column supercritical fluid chromatography, J Chemom 26 (2012) 52–65, http://dx.doi.org/10.1002/cem.1414

[42] E Lemasson, S Bertin, P Hennig, H Boiteux, E Lesellier, C West, Development

of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates Part I: optimization of mobile phase composition, J Chromatogr.

A 1408 (2015) 227–235, http://dx.doi.org/10.1016/j.chroma.2015.07.037 [43] C West, E Lemasson, S Bertin, P Hennig, E Lesellier, An improved classification of stationary phases for ultra-high performance supercritical

Trang 8

org/10.1016/j.chroma.2016.02.052

[44] T Shibata, S Shinkura, Stationary phase, WO/2014/017280.

[45] http://www.fujitsu.com/global/solutions/business-technology/tc/sol/

scigress/

[46] K Kimata, K Iwaguchi, S Onishi, K Jinno, R Eksteen, K Hosoya, M Araki, N.

Tanaka, Chromatographic characterization of silica C18 packing materials.

Correlation between a preparation method and retention behavior of

stationary phase, J Chromatogr Sci 27 (1989) 721–728, http://dx.doi.org/10.

1093/chromsci/27.12.721

[47] M Mifune, Y Mori, M Onoda, A Iwado, N Motohashi, J Haginaka, Y Saito,

Separation characteristics of aminopropyl silica gels modified with

stationary phase, Anal Sci 14 (1998) 1127–1131, http://dx.doi.org/10.2116/ analsci.14.1127

[48] K Jinno, H Mae, Molecular planarity recognition of polycyclic aromatic hydrocarbons in supercritical fluid chromatography, J High Resolut Chromatogr 13 (1990) 512–515, http://dx.doi.org/10.1002/jhrc.1240130715 [49] S Wise, W.J Bonnett, F.R Guenther, W.E May, A relationship between reversed-phase C18 liquid chromatographic retention and the shape of polycyclic aromatic hydrocarbons, J Chromatogr Sci 19 (1981) 457–465,

http://dx.doi.org/10.1093/chromsci/19.9.457

Ngày đăng: 31/12/2022, 09:45

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm