1. Trang chủ
  2. » Giáo án - Bài giảng

Poly(4-vinylpyridine) based novel stationary phase investigated under supercritical fluid chromatography conditions

9 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Poly(4-vinylpyridine) Based Novel Stationary Phase Investigated Under Supercritical Fluid Chromatography Conditions
Tác giả Kanji Nagai, Tohru Shibata, Satoshi Shinkura, Atsushi Ohnishi
Trường học Dai Corporation, CPI Company, Life Science Development Center, Innovation Park, Himeji, Hyogo, Japan
Chuyên ngành Analytical Chemistry
Thể loại Research Article
Năm xuất bản 2018
Thành phố Himeji
Định dạng
Số trang 9
Dung lượng 2,42 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

A novel poly(4-vinylpyridine) based stationary phase was investigated for its performance under supercritical fluid chromatography (SFC) mode. Due to its unique structure, this stationary phase has high molecular planarity recognition ability for aromatic samples possessing the same number of aromatic rings and -electrons.

Trang 1

jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a

DAICEL Corporation, CPI Company, Life Science Development Center, Innovation Park, 1239, Shinzaike, Aboshi-ku, Himeji, Hyogo, 671-1283, Japan

a r t i c l e i n f o

Article history:

Received 31 May 2018

Received in revised form 7 August 2018

Accepted 16 August 2018

Available online 23 August 2018

Keywords:

Supercritical fluid chromatography

Stationary phase

Ligand

Selector

Polymer

Poly(4-vinylpyridine)

a b s t r a c t

Anovelpoly(4-vinylpyridine)basedstationaryphasewasinvestigatedforitsperformanceunder super-criticalfluidchromatography(SFC)mode.Duetoitsuniquestructure,thisstationaryphasehashigh molecularplanarityrecognitionabilityforaromaticsamplespossessingthesamenumberofaromatic ringsand␲-electrons.Takingadvantageoftheplanarityrecognitionabilityobserved,separationsof structurallysimilarpolycyclicaromatichydrocarbonsandsteroidswereachieved.Thisnovel station-aryphaseaffordedgoodpeaksymmetryforbothacidicandbasicactivepharmaceuticalingredientseven whenexcludingtheuseofadditivessuchasacids,bases,andsalts.Thesefindingsmaybeattributedtothe polymericpyridylgroupscovalently-attachedonsilicagel,whichwilleffectivelyshieldtheundesirable interactionbetweenresidualsilanolgroupsonthesurfaceandtheanalytes.Moreover,thepropertiesof pyridylgroupontheselectorcanbereversiblytunedtocationicpyridiniumformbyelutingtrifluoroacetic acidcontainingmodifier.Columnrobustnesstowardcycledurabilitytestingwasalsoconfirmed

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/)

1 Introduction

Supercritical fluid chromatography (SFC) is increasing inuse

in the analytical and preparative separation field [1 SFC uses

supercritical orsubcritical mobile phasesconsisting of

pressur-izedcarbondioxide(CO2),usuallymixedwithamiscibleorganic

solvent(e.g.an alcohol).Thistechnologyhasmajor advantages

overmoreconventionalliquidchromatography(HPLC)orgas

chro-matography(GC), becauseit has a low viscosityallowing high

diffusivitiesandlimitedpressuredrop.Therefore,highflowrates

can beappliedwithout losing efficiency [2–8] In addition,the

“green”aspectisasignificantmotivationforSFCbecauseCO2isa

nontoxicrecycledmaterialandgeneratesnowastedisposalissues

Thehigh-throughputpotentialtogetherwithecologicaladvantages

contributetomakingSFCattractivetechnologyforawiderangeof

applications,notonlyforchiral[9–15],butalsointheachiralfield

[16–30]

TheretentionandseparationmechanismsinSFCarelikelyto

dependon a combination of both mobilephase and stationary

phase(SP)[5 AvarietyofSPsarecurrentlyavailableforusein

SFCmode.Mostofthesephaseshavebeendevelopedinand

trans-ferredfromthecommerciallyavailableportfoliosofHPLCSPs(e.g

∗ Corresponding author.

E-mail address: kn nagai@jp.daicel.com (K Nagai).

reversephase,normalphase,and/orHILIC).Inparallel,thereare someactivitiestodevelopnovelSPsspecificallydesignedforSFC use[31].OneofthemostrecognizedSPdedicatedtoachiralSFC separationis2-ethylpyridine(2-EP)bondedsilicaphase.This2-EP

SPaffordsgoodpeakshapesespeciallyforbasiccompounds, with-outanyadditiveinthemobilephase[32].OthernovelSPsforSFC havebeendevelopedbyacademicandindustrygroups[33–38] Most of the SPs used for achiral SFC separations are com-posedoflow-molecular-weightselectorscovalentlybondedonto

a solidsupport,usuallysilicagel.Polymertypeselectorswould

beexpected tointeractwithanalytesby utilizing multipleand cooperativemechanismsandinadditionpossesshighdurability However,onlyaverylimitednumberofexampleshavebeen intro-ducedthatutilizepolymer-basedligandsforachiralSFCseparation [36]

Basedontheexperienceofourresearchteaminthepolymeric field,werecentlydevelopedanovelpoly(butyleneterephthalate) basedcolumn,whichexhibiteduniquemolecularrecognition abil-itytogetherwithhighrobustnessincycledurabilitytests[38].We consideredthat thesefeatures maybeattributedtothe associ-atedmacromoleculareffectandasaresultwedecidedtodevelop variouspolymer-basedSPsandtoevaluatetheirperformance Forthedesignofthenovelpolymerstationaryphaseseries,we attemptedtoprepareseveralpolymersbased onthe ethylpyri-dine moiety, mainlyasthe commercialphasescontaining such synthonareconsideredasbenchmarksformanyresearchers.In

https://doi.org/10.1016/j.chroma.2018.08.038

0021-9673/© 2018 The Author(s) Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).

Trang 2

120 K Nagai et al / J Chromatogr A 1572 (2018) 119–127

Fig 1.Structure of poly(4-vinylpyridine) or P4VP-based selector of the column

DCpak P4VP.

thisperspective,movingfromamonomerictoapolymeric

selec-tor,wewereexpectingthatthemolecularrecognitionabilitymay

beimprovedbymultipleconcertedinteractionsbetweenthemore

abundantpolymericpyridylligandinteractionswiththeanalyte

sample.Similartotherecentlyreportedpoly(butylene

terephtha-late)selector,these polymertype selectorswereanticipated to

displayahighdurabilityasthepolymerlayeronsilicagelshould

effectivelyshieldanyundesirablechemicalinteraction

TheHPLCseparationbehaviorofpyridinecontainingpolymerSP

hasbeenstudiedbyIhara[39–41].ThisSPshowedgoodselectivity

particularlyforplanaranddisk-likearomaticmoleculesinreverse

andnormalphaseHPLCmodes.Theinvestigationsofthepolymeric

phaseinHPLCmodewastheobjectiveofthiswork

Inanearlierstudy,wefocusedonnovelvinylpyridinepolymers

andrelated vinylheteroaromaticpolymers,and evaluatedtheir

performanceinSFCmode.We testedvariouspoly(vinylpyridine

isomers),including poly(2-vinylpyridine), poly(3-vinylpyridine),

and poly(4-vinylpyridine), together with poly(vinylimidazole)

[42,43].TheseSPsaffordeddistinctivemolecularrecognition

abili-ties,particularlyforstructurally-similarisomericsamples.Among

them,poly(4-vinylpyridine)(P4VP)SPwasfoundtoprovide

bet-termolecularshaperecognitionperformance(Fig.1).Thepresent

articlefocusesonthisP4VPcolumnanddescribesitsseparation

behaviorbyusingvarioussamples.Basedontheseresults,its

char-acteristicsandsuitablechromatographicconditionsarediscussed

2 Materials and methods

2.1 Chemicals

ThemodifierusedinthisstudywasJapaneseIndustrialStandard

specialgrademethanol(MeOH)obtainedfromNacalaiTesqueInc

(Kyoto,Japan).Carbondioxideofindustrialgrade(over99.5%)was

purchasedfromTatsumiIndustryCo.,Ltd.(Hyogo,Japan)

Ammo-niumformatewasobtainedfromWakoPureChemicalIndustries

(Osaka,Japan)

o-Terphenyl,triphenylene,anthracene,phenanthrene,pyrene,

chrysene, perylene, theobromine, trans-cinnamic acid,

3-phenylphenol, adenine, and diethylamine were purchased

from Tokyo Chemical Industry Co (Tokyo, Japan)

1,3,5-Tri-tert-butylbenzene, 2-acetylanthracene, 9-acetylanthracene,

3-acetylphenanthrene,9-acetylphenanthrene,paraxanthine,

feno-prophen,ketoprofen,naproxen,alprenolol,propranolol,atenolol,

pindolol,andcyanocobalaminwerepurchasedfromSigma-Aldrich

Corporation(St.Louis,MO,USA).Trifluoroaceticacid(TFA),

naph-thaceneanddexamethasonewerepurchasedfromNacalaiTesque

Inc.(Kyoto, Japan).2-Propanol(IPA), prednisone,estrone,

pred-nisolone,estradiol, estriol, caffeine, theophylline, nicotinamide,

andpyridoxinewerepurchasedfromWakoPureChemical

Indus-tries(Osaka,Japan).N-hexane(nHex)waspurchasedfromKanto

ChemicalCo.(Tokyo,Japan)

2.2 Instrumentationandchromatographicconditions DCpak P4VP column (initially launched as DCpak SFC-B), sized 150mm×4.6mm(i.d.), wassupplied byDAICEL Corpora-tion (Tokyo, Japan) This selector is composed of immobilized P4VP on 5 ␮m silica particle (N.B also available on 3 ␮m)

A Silica 2-ethylpyridine (2-EP) column of 5 ␮m particle, sized

150mm×4.6mm(i.d.),waspurchasedfromWatersCorporation (Milford,MA,USA).TheSFCinstrumentusedinthisstudyis

Nexera-UC supplied by Shimadzu Corporation(Kyoto, Japan) equipped withaCO2pump,amodifierpump,avacuumdegasser,acolumn oven,amultiplewavelengthUVdetector,andautomatedback pres-sureregulator(ABPR).LabSolutionssoftware(V5.89)wasusedfor systemcontrolanddataacquisition.Chromatographicconditions, suchasmodifier,columntemperature,ABPRpressure,totalflow rate,detectionwavelength, sampleconcentration,and injection volumeweredescribedineachfigure,respectively

2.3 Dataanalysis Relativeretentionfactor(k)andseparationfactor(˛)were cal-culatedwiththeequationsbelow

where V is the elution volume of an analyte and V0 is the columnvoidvolume.V0wasestimatedbyinjecting 1,3,5-tri-tert-butylbenzeneasanon-retainedmarker.k1andk2inEq.(ii)arethe retentionfactorsofthefirstandsecondelutedpeaks,respectively

3 Results and discussion

3.1 Planarityrecognitionofaromatics Consideringthestructurefeaturesofthepoly(4-vinylpyridine)

SP,itwasexpectedtointeractwithplanararomaticsamplesasa resultofthemultiplearomaticpyridylunitscovalentlyattached

onsilicagel.Non-planaro-terphenyl(1)andplanartriphenylene

(2)withthesamenumberofaromaticringsand␲-electronswill providedetailed perception ofthe planarityrecognitionability, becausetheyhavebeenconsideredasindicatorformolecular pla-narityrecognitioninHPLC[44,45]andSFC[46].Fig.2Ashowsthe SFCchromatogramof1and2byusingP4VP,whenitsperformance wascomparedwithcommerciallyavailable2-EPSPunderisocratic conditions.Theretentiontimeofnon-planar1wasalmostidentical forthenewselectorand2-EP,whilethatofplanarsample2 signif-icantlyincreasedforP4VP.TheseparationfactorforP4VPselector between1and2(˛:k2/k1)reached30.6,whereasthatobtained

by2-EP is 4.4 Thisresult indicatesthat␲-electron rich planar

2couldstronglyinteractwithvinylpyridinepolymerselectorvia

␲–␲interaction

Takingadvantageofthishighplanarityrecognitionability, com-merciallyavailablepolycyclicaromatichydrocarbons(PAHs)were analyzed.Fig.3showstheSFCchromatogramofeightPAHs(2–9)

undergradientcondition.Eightpeakswerewellseparatedonthe P4VPcolumn.Ofparticularnoteisthatanthracene(4)and phenan-threne(5)havethesamemolecularweightandsimilarmolecular sizeandpolarity.Therefore,thesetwocompoundscannotbe dis-tinguishedbyMSdetector,whichmeanthattheonlymethodto separate4and5mustbebycolumnseparation.Thisnew selec-torachievedabaselineresolutionfor4and5.Ontheotherhand, whenthesecompoundswereanalyzedby2-EPSPunderthesame condition,4and 5 co-eluted Theslightadjustmentof gradient conditionswasnecessarytoseparate4and5inisocraticmode, immediatelyaftereluting4and5,alineargradientprogramstarted

Trang 3

Fig 2.SFC chromatograms of o-terphenyl and triphenylene on (A) DCpak P4VP and

(B) 2-EP SPs Modifier, MeOH (isocratic condition, 3%); temperature, 40◦C; ABPR,

15 MPa; total flow rate, 3 mL/min; UV detection, 254 nm; sample concentration,

0.3 mg/mL in nHex/IPA = 9/1; injection volume, 1 ␮L.

ThelongeraspectratioofthePAHanalyzedresultedinashorter

retentiontime.Wiseetal.proposedlength-to-breadth(L/B)ratio

fordescribingtwodimensionalaspectratioofPAH,andthesmaller

L/Bratioindicatesthedisk-likemolecule[47].Indeed,L/Bratioof

naphthacene(7),chrysene(8),andtriphenylene(2)whichhavethe

samenumberofaromaticringsand␲-electronsis1.89,1.72,and

1.12,respectively.Theelutionorderof7, 8,and2is7<8<2,which

istheinverseofL/Bratio.Thesetendenciesarealmostidenticalfor

similarstationaryphaseusedinHPLCmode[41]

Similartotheseparationof non-substitutedPAH separation,

regioselectiveacetylated anthracene(10, 12) andphenanthrene

(11, 13)werealsoexaminedunderisocraticconditions.Although

thesesampleshavealmostthesamemolecularsizeandpolarity,

theP4VPselectorcanrecognizetheslightstructuraldifferencesand

thefourpeakswerewellresolvedasshowninFig.4

Fromtheseresults,thenewcolumnshowsexcellentplanarity

recognitionandmolecularshaperecognitionofvariousaromatic

isomersandPAHs.CombiningP4VPcolumnwithsupercriticalfluid

extraction(SFE)andsubsequentSFCtechniquewouldenableusto

analyzetheresidualPAHinsoilandatmosphereetc[21]

3.2 Separationofsampleswithdifferentstructuralfeatures

Inspiredbytheinterestingplanarityandmolecularshape

recog-nition,othertypeofplanarsamplefamiliese.g.steroidsmixtures

(14–19)wereanalyzedunderisocraticconditions.Fig.5showsthe

SFCchromatogramofsixstructurallyrelatedsteroids.In

particu-lar,prednisone(14),prednisolone(16),anddexamethasone(18)

Fig 3.SFC chromatogram of eight polycyclic aromatic hydrocarbons on (A) DCpak P4VP and (B) 2-EP SPs Inset shows magnified chromatogram Modifier, MeOH (gra-dient condition); temperature, 40 ◦ C; ABPR, 15 MPa; total flow rate, 3 mL/min; UV detection, 254 nm; sample concentration, 0.1 mg/mL (except9),0.3 mg/mL(9)in nHex/IPA = 9/1; injection volume, 1 ␮L The gradient started with 3% of MeOH, after

3 min hold at 3% of MeOH, linear gradient ramped up to 38% of MeOH over 14 min, followed by 1 min hold at 38% of MeOH, then returned to 3% of MeOH over 2 min, followed by 1 min hold at 3% of MeOH.

have almostsame skeleton withsome slightdifferences in the substituents, and thereforetheyare difficulttoseparate.When investigatingthesesamplesbyusing2-EPSPunderthesame con-ditions,theywereco-eluting.Wenotethattheconditionsapplied wereonlytocomparetheselectivityinexactlyidenticalconditions

Abetterseparationmightbepossiblefor2-EPbyusingdifferent gradientcondition.Thedirectseparationofsuchsteroidmixturesin SFCmodewouldhavesignificanceinsteroidprofiling,aspotential biomarkers[48]oralsoinanti-dopingcontrol

Theanalysisofcaffeine(20)anditsdemethylatedderivatives, theophylline(21),theobromine(22)and paraxanthine(23)was alsoinvestigated.Fig.6showstheSFCchromatogramofthe mix-ture.Goodpeakresolutionwithsymmetricalpeakswasobserved forthesepolaranalytesaswellasforless-polarPAHderivativesand steroids.Thelongerretentionof21–23than20maybeattributed

tothehydrogenbondinginteractionsbetweenthedemethylated protonoftheanalytesandtheprotonacceptorbehaviorofP4VP selector

Trang 4

122 K Nagai et al / J Chromatogr A 1572 (2018) 119–127

Fig 4.SFC chromatogram of acetylated anthracene and phenanthrene on DCpak

P4VP SP Modifier, MeOH (isocratic condition, 3%); temperature, 40◦C; ABPR,

15 MPa; total flow rate, 3 mL/min; UV detection, 254 nm; sample concentration,

0.15 mg/mL in nHex/IPA = 9/1; injection volume, 1 ␮L.

ThisnovelSPcontainsthebasicpoly(4-vinylpyridine)moiety

andonemayguessthatacidicsampleswouldbestronglyretained

and/orwouldshowtailingpeaksonit Inorder toconfirm this

point, we tested propionic acidnonsteroidal anti-inflammatory

drugs(NSAIDs),fenoprofen (24),ketoprofen(25),andnaproxen

(26).Fig.7showstheSFCchromatogramofthreeNSAIDsunder

iso-craticconditionswithoutanyadditives,whichgavethreeresolved

peaks.Surprisingly,theirpeakshapeswererelativelysymmetric,

withpeak symmetryfactors(Ps)for 24of1.11,1.15for25, and

1.19for26.Theseresultsindicatethatthepyridinepolymer

lig-andmustefficientlyshieldtheundesirableinteractionsbetween

analytesandresidualsilanolgroupsonSP

3.3 Effectofadditives

IntheSFCfield,itiscommontouseadditivesasathird

com-ponentinthemobilephase,suchasacids,basesandsalts.They

improve the peak shapes and/or increase the solubility in the

mobilephaseespeciallyforpolaranalytes[5,31,49].Basicadditives

areoftenusedforbasicsamples;acidicadditivesforacids,butother

combinationsarealsopossible.Thecurrenttrendforbothacidic

andbasicsampleanalysisistousevolatilesalts,suchas

ammo-niumformateandammoniumacetate.Theseadditivesareoften

usedwhenseparatingAPIsinSFCinanalyticalaswellaspreparative

applications,becausemanyAPIsbearpolarand/orionizablegroups

whichcaneasilyinteractwiththeresidualsilanolgroups,andoften

resultindeficientpeakshapes(leading,tailing,andasymmetric

peaks)[31] However,ifa SPcouldafford goodpeaksymmetry

withoutanyadditive,itwouldbeconsideredadvantageous.The

absenceofadditiveswouldbeapositivefeatureforpreparative

applications(nosaltstoberecuperatedtogetherwiththe

prod-uct),butalsoforanalyticalUVdetection(thehighUVabsorptionof

Fig 5. SFC chromatogram of six steroids on (A) DCpak P4VP and (B) 2-EP SPs Modifier, MeOH (isocratic condition, 30%); temperature, 40◦C; ABPR, 15 MPa; total flow rate, 3 mL/min; UV detection, 225 nm; sample concentration, 0.33 mg/mL in nHex/IPA = 1/1; injection volume, 2 ␮L.

Fig 6.SFC chromatogram of caffeine, theophylline, theobromine, and paraxanthine

on DCpak P4VP SP Modifier, MeOH (isocratic condition, 5%); temperature, 40 ◦ C; ABPR, 15 MPa; total flow rate, 3 mL/min; UV detection, 225 nm; sample concentra-tion, 0.2 mg/mL in MeOH/IPA = 1/1; injection volume, 2 ␮L.

Trang 5

Fig 7.SFC chromatogram of nonsteroidal anti-inflammatory drugs on DCpak P4VP

SP Modifier, MeOH (isocratic condition, 10%); temperature, 40◦C; ABPR, 15 MPa;

total flow rate, 3 mL/min; UV detection, 210 nm; sample concentration, 0.2 mg/mL

in IPA; injection volume, 2 ␮L.

ammoniumformateorammoniumacetateespeciallyingradient

conditionssometimesleadstounstablebaselines)

Accordingly, we analyzed four␤-adrenergic blocking agents

(␤-blockers)(27–30)inthepresenceandabsenceofammonium

formate,tocomparethechromatographicperformanceofthetwo

SPs.Fig.8AshowstheSFCchromatogramoffour␤-blockersunder

gradientconditionsobtainedbyusingthe2-EPcolumnwithout

anyadditive.Ingeneral,forsuchbasicsamples,theirpeakswere broadenedwithoutanyadditives.However,whenanappropriate additive(e.g.20mMofammoniumformate)wasused,thepeak shapesweresubstantiallyimproved(Fig.8B)

Asexpected,theP4VPcolumncanproducerelatively symmet-ricalpeaksevenintheabsenceofanyadditive(Fig.8C).Asfor2-EP, aftertheadditionofsalts,peakswerefurthersharpened(Fig.8D) ThefactthattheP4VPcolumncouldgainsharppeakswithout anyadditivesforthesebasicAPIsmaybeattributedtothe poly-mericligandeffect.ThecovalentlybondedP4VPchainsmayspread

ontheporoussilicagelsurfaceandwillcontributetoreducethe undesirableinteractionsbetweentheresidualsilanolgroupsand thebasicanalytes

3.4 Effectofconditioningwithdifferentadditive

Asthenewselectorconsistsofbasicpoly(4-vinylpyridine) moi-eties,itcanbeenvisagedtoformacationicpyridiniumformby reactionwithstrongacidssuchastrifluoroaceticacid(TFA)and

beconvertedtoaquaternizedamphiphilicsaltformbyreaction withthecorrespondingalkylhalide.Recently,IharaandTakafuji reportedamphiphilicpoly(N-alkylpyridiniumsalt)basedHPLCSPs throughquaternizationreactions Theirseparationmodecanbe easilytunedbychangingtheN-alkylsidechainlength[50,51] The protonated pyridinium salt effect was investigated for theP4VPphasebypassingthroughTFA-containingmodifier.We selectedneutral(2, 13),acidic(31, 32)andbasicsamples(21, 34)

forthistestunderisocraticconditions

Fig 8. SFC chromatograms of ␤-blockers (A, C) in the absence or (B, D) presence of ammonium formate on (A, B) 2-EP and (C, D) DCpak P4VP SPs Modifier, MeOH (gradient condition); temperature, 40◦C; ABPR, 15 MPa; total flow rate, 3 mL/min; UV detection, (A, C) 220 or (B, D) 280 nm; sample concentration, 0.1 mg/mL in MeOH; injection volume, 2 ␮L The gradient started with 10% of modifier, after 1 min hold at 10% of modifier, linear gradient ramped up to 35% of modifier over 10 min, followed by 2 min

Trang 6

124 K Nagai et al / J Chromatogr A 1572 (2018) 119–127

Fig 9. (A–E) SFC chromatograms and (F) retention factor dependent of neutral, acidic, and basic samples on DCpak P4VP SP by using various modifier under isocratic condition (10%) Before each analysis, the testing modifier was eluted for more than 30 min for equilibration Each modifier was, (A) MeOH, (B) MeOH/TFA = 100/1, (C) MeOH, (D) MeOH/DEA = 100/1, and (E) MeOH For detail, please see text Temperature, 40 ◦ C; ABPR, 15 MPa; total flow rate, 3 mL/min; UV detection, 254 nm; sample concentration, 0.13 mg/mL in nHex/IPA = 1/1; injection volume, 2 ␮L.

Fig.9A showstheSFC chromatogramofthesix sample

mix-ture with MeOH as modifier These samples were eluted as

relativelysymmetricpeaks.AfterpassingaTFA-containing

mod-ifier(MeOH/TFA=100/1,(v/v))for more than30min.,thesame

sample mixturewas injected Fig.9B shows thecorresponding

chromatogramandFig.9Ftheretentionfactor(k)dependenceon

modifiercomposition.Theirelutionorderdramaticallychanged

Acidicsamples(31, 32)elutedfaster thanintheinitialanalysis,

whereasbasictheophylline(21)hardlychangeditsretentiontime

andmorebasicadenine(34)elutedsignificantlylater.Surprisingly,

neutralsamples(2, 13)alsoelutedfasterthanintheoriginal

anal-ysis.However,byusingMeOHagainasamodifierduring30min.,

retentiontimeofallanalyteswerelikelytorecovertheoriginal

pro-file(Fig.9C).Wethenusedadiethylamine(DEA)-containingMeOH

(MeOH/DEA=100/1, (v/v)) as a modifier, and thesame

experi-mentwasconducted.However,theelutionorderhardlychanged

(Fig.9D).AfterpassingMeOHasamodifieragain,theelutionalmost

revertedtothatofthefirstinjection(Fig.9E)

Basedontheseresults, weproposedthefollowing retention

mechanism.Asdiscussedintheprevioussection,thepyridylgroups

onthepolymersidechainseffectivelymaskthesilanolgroupson

silicagelsurface,whichleadtoashieldingofundesirable

interac-tionsbetweensilanolsandanalytes.WhenonlyMeOHwasusedas

modifier,theacidicsamples(e.g.31),caninteractwiththeSPvia

acid-baseinteraction,whilesuchaninteractionbetweenSPand basicanalytes(e.g.34)shouldnotbeexpected(Fig.10A).Forthis reason,theelutionof34mightbefasterthantheoneof31.When

aTFA-containingMeOHwasusedasamodifier,thepyridylgroups

onthesidechainareprotonated(Fig.10B).ContrarytoFig.10A,the protonatedSPand34caninteract.Wenotethatthepyridylgroups

intheSParemorepronetoprotonatethan34becausepyridineis morebasicthan34basedonthepKavaluesofthecorresponding conjugateacids[52,53].Hence,theelutionofbasic34wasslower thanacidic31.Thereasonwhytheretentiontimeofneutral sam-plesdecreasedunderacidicconditionsisstillunclear.Weenvisage thattheelectrondensityof thepyridylring intheSPmightbe decreasedbyprotonation,orMeOHmaysolvatetheprotonated sidechains,whichwillinterferewiththeSPandneutralanalyte interaction.Insuchacase,itmayaffecttheretentionbehaviorof neutralsamplesinacidicconditions.AftergraduallypassingMeOH

asmodifieragain,theprotonatedSPsidechainsgradually depro-tonatedtobeintheiroriginalstate.Therefore,theinitialretention behaviorgraduallyrecovered.DEAseemstohavelesseffectonthe retentionofthesesamples

Asdemonstratedhere,theelutionorderofthisselectorcanbe reverselytunedthroughacidmediatedpyridiniumsaltformation

Trang 7

Fig 10.Postulated retention mechanism of DCpak P4VP in neutral conditions (A) and acidic conditions (B).

Fig 11.Cycle dependent SFC chromatograms of water soluble vitamins on (A) 2-EP and (B) DCpak P4VP SPs Modifier; MeOH (isocratic condition, 25%); temperature, 40 ◦ C; ABPR, 15 MPa; total flow rate, 3 mL/min; UV detection, 230 nm; sample concentration, 0.2 mg/mL in MeOH; injection volume,2 ␮L.

3.5 Cycledurabilitytests

Asmentionedintheintroduction,polymer-typeselectorswere

expectedtoshowgood durabilityas weestimatethat

undesir-ableattackmaybeinterfered withthepolymerligandlayeron

theSPsurface.Recently,weconfirmedthecolumnrobustnessof

poly(butyleneterephthalate)selectorbyarangeofcycledurability

testing[38]

Inordertoinvestigatethedurabilityof anewP4VPcolumn,

threewatersolublevitamins(WSVs),nicotinamide(vitaminB3),

pyridoxine(vitaminB6),andcyanocobalamin(vitaminB12)were selected

Fig 11A shows the cycle-dependent SFC chromatograms of threeWSVsbyusing2-EPcolumnunderisocraticconditions.For thefirstinjection,threepeakswerewellseparatedanda character-isticlongretentionwasobservedforvitaminB12.However,asthe cyclepassed,theretentiontimegraduallydecreasedforvitaminB3

andvitaminB6,andsharplydecreasedforvitaminB12.Fig.11Aalso showsthechromatogramsafter20,41,60,and80cycles.The reten-tiontimecontinuouslydecreasedandthatofvitaminB12reduced

tolessthanhalfoftheoriginaltime.Fairchildetal.proposedthat

Trang 8

126 K Nagai et al / J Chromatogr A 1572 (2018) 119–127

Fig 12. Cycle versus retention factor (k) of (A) vitamin B 3 , (B) vitamin B 6 , and (C) vitamin B 12 by using DCpak P4VP and 2-EP columns Experimental condition is same as Fig 11

silyletherformationbyacondensationreactionbetweensilanols

andMeOHusedasamodifierisamajorcontributiontoretention

variationovertimeinSFCmode[54]

WeinvestigatedthesamecycletestfortheP4VPcase(Fig.11B)

Incontrastto2-EPcase,theretentiontimeofthesesamplesdid

notchange after20, 40, 60,and 80 cycles Fig.12 shows cycle

versustheirretentionfactors(k).Wenotethatthesystematiccycle

investigationherereportedwasrunover80sequentialcyclesin

brand-newcolumn,howevertheP4VPcolumnsusedinthisstudy

togenerateallexperimentaldatareportedwereperiodicallytested

withthestandardsamplesandconfirmedthedurabilityandthe

stabilityoverseveralmonths

4 Conclusion

AnovelP4VPbasedcolumnwasdesignedanditsperformance

wasevaluatedunderSFCconditions.ThisSPshowedunique

molec-ularshape recognitionforplanarmoleculessuchasstructurally

related polycyclic aromatichydrocarbons and steroid mixtures

ThenewSPaffordedsymmetricpeaksforactivepharmaceutical

ingredientanalysisevenintheabsenceofanyadditives,e.g.acids,

bases, or salts,probably due tothe effective shield of residual

silanolsbythepolymericpyridineselector.Thesurfacechemical

propertiesofthenewcolumncanbeeasilyconvertedtocationic

pyridiniumformbyelutingTFAcontainingmodifiers,which

dra-maticallychangeelutionorderofacidic,basic,andeven neutral

analytes.Thissignificantelutionorderchangecanberecoveredto

theoriginalstatebypassingthroughDEAcontainingmodifier

Additionally,thecolumnperformancedidnotchangeasaresult

ofcycledurabilitytestingofwatersolublevitamins

Thepresentstudytogetherwiththatofanotherourpolymeric

SP[38,43,55]revealedthatoursyntheticpolymerbasedselector

wouldbeaversatiletoolinSFCanalysis.Furthermore,itcanbe

extendedinuseintopreparativefields.Furtherinvestigationsof

othersampleapplicationindifferentchromatographicmodesand

deepinsightofthisSPisnowinprogress

Acknowledgments

TheauthorswishtothankDr.PilarFrancoandTongZhangin

ChiralTechnologiesEuropeS.A.S forvaluablediscussions.The

authorsalsoappreciate Dr JosephM.Barendt and MsLorraine EvangelistainChiralTechnologies,Inc.andDr.BrianFreerinChiral TechnologiesEuropeS.A.SforEnglishgrammaticalcorrection Thisresearchdidnotreceiveanyspecificgrantfromfunding agenciesinthepublic,commercial,ornot-for-profitsectors

References

[1] C.F Poole (Ed.), Supercritical Fluid Chromatography (Handbooks in Separation Science), Elsevier, 2017.

[2] T.A Berger, Separation of polar solutes by packed column supercritical fluid chromatography, J Chromatogr A 785 (1997) 3–33, http://dx.doi.org/10 1016/S0021-9673(97)00849-2

[3] L.T Taylor, Supercritical fluid chromatography for the 21 st century, J Supercrit Fluids 47 (2009) 566–573, http://dx.doi.org/10.1016/j.supflu.2008 09.012

[4] G Guiochon, A Tarafder, Fundamental challenges and opportunities for preparative supercritical fluid chromatography, J Chromatogr A 1218 (2011) 1037–1114, http://dx.doi.org/10.1016/j.chroma.2010.12.047

[5] E Lesellier, C West, The many faces of packed column supercritical fluid chromatography - A critical review, J Chromatogr A 1382 (2015) 2–13846, http://dx.doi.org/10.1016/j.chroma.2014.12.083

[6] V Desfontaine, D Guillarme, E Francotte, L Nováková, Supercritical fluid chromatography in pharmaceutical analysis, J Pharm Biomed Anal 113 (2015) 56–71, http://dx.doi.org/10.1016/j.jpba.2015.03.007

[7] S Fekete, J.L Veuthey, D Guillarme, Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: theory and practice, J Chromatogr A 1408 (2015) 1–14, http://dx.doi.org/10 1016/j.chroma.2015.07.014

[8] A Tarafder, Metamorphosis of supercritical fluid chromatography to SFC: an Overview, TrAC Trends Anal Chem 81 (2016) 3–10, http://dx.doi.org/10 1016/j.trac.2016.01.002

[9] G Terfloth, Enantioseparations in super- and subcritical fluid chromatography, J Chromatogr A 906 (2001) 301–307, http://dx.doi.org/10 1016/S0021-9673(00)00952-3

[10] G.B Cox, Enantioselective supercritical fluid chromatography using Daicel’s

“platinum series” polysaccharide-based columns, LC-GC North-Am Appl Noteb (2007) 31.

[11] L Miller, Preparative enantioseparations using supercritical fluid chromatography, J Chromatogr A 1250 (2012) 250–255, http://dx.doi.org/10 1016/j.chroma.2012.05.025

[12] P Franco, T Zhang, Common screening approaches for efficient analytical method development in LC and SFC on columns packed with immobilized polysaccharide-derived chiral stationary phases, in: G.K.E Scriba (Ed.), Chiral Sep Methods Protoc., 2nd ed., Humana Press, Totowa, NJ, 2013, pp 113–126, http://dx.doi.org/10.1007/978-1-62703-263-6

[13] J Lee, J.T Lee, W.L Watts, J Barendt, T.Q Yan, Y Huang, F Riley, M Hardink, J Bradow, P Franco, On the method development of immobilized

polysaccharide chiral stationary phases in supercritical fluid chromatography using an extended range of modifiers, J Chromatogr A 1374 (2014) 238–246, http://dx.doi.org/10.1016/j.chroma.2014.11.044

Trang 9

[14] S Khater, M.A Lozac’h, I Adam, E Francotte, C West, Comparison of liquid

and supercritical fluid chromatography mobile phases for enantioselective

separations on polysaccharide stationary phases, J Chromatogr A 1467

(2016) 463–472, http://dx.doi.org/10.1016/j.chroma.2016.06.060

[15] K Zawatzky, M Biba, E.L Regalado, C.J Welch, MISER chiral supercritical fluid

chromatography for high throughput analysis of enantiopurity, J Chromatogr.

A 1429 (2016) 374–379, http://dx.doi.org/10.1016/j.chroma.2015.12.057

[16] D Thiébaut, Separations of petroleum products involving supercritical fluid

chromatography, J Chromatogr A 1252 (2012) 177–188, http://dx.doi.org/10.

1016/j.chroma.2012.06.074

[17] L.T Taylor, Packed column supercritical fluid chromatography of hydrophilic

analytes via water-rich modifiers, J Chromatogr A 1250 (2012) 196–204,

http://dx.doi.org/10.1016/j.chroma.2012.02.037

[18] K Ty´skiewicz, A D ˛ebczak, R Gieysztor, T Szymczak, E Rój, Determination of

fat- and water-soluble vitamins by supercritical fluid chromatography: a

review, J Sep Sci 41 (2018) 336–350, http://dx.doi.org/10.1002/jssc.

201700598

[19] G.F Pirrone, R.M Mathew, A.A Makarov, F Bernardoni, A Klapars, R.

Hartman, J Limanto, E.L Regalado, Supercritical fluid

chromatography-photodiode array detection-electrospray ionization mass

spectrometry as a framework for impurity fate mapping in the development

and manufacture of drug substances, J Chromatogr B 1080 (2018) 42–49,

http://dx.doi.org/10.1016/j.jchromb.2018.02.006

[20] C West, E Lemasson, S Bertin, P Hennig, E Lesellier, Interest of

achiral-achiral tandem columns for impurity profiling of synthetic drugs with

supercritical fluid chromatography, J Chromatogr A 1534 (2018) 161–169,

http://dx.doi.org/10.1016/j.chroma.2017.12.061

[21] A.P Wicker, D.D Carlton, K Tanaka, M Nishimura, V Chen, T Ogura, W.

Hedgepeth, K.A Schug, On-line supercritical fluid extraction—supercritical

fluid chromatography-mass spectrometry of polycyclic aromatic

hydrocarbons in soil, J Chromatogr B 1086 (2018) 82–88, http://dx.doi.org/

10.1016/j.jchromb.2018.04.014

[22] O Petkovic, P Guibal, P Sassiat, J Vial, D Thiébaut, Active modulation in neat

carbon dioxide packed column comprehensive two-dimensional supercritical

fluid chromatography, J Chromatogr A 1536 (2018) 176–184, http://dx.doi.

org/10.1016/j.chroma.2017.08.063

[23] J.L Bernal, M.T Martín, L Toribio, Supercritical fluid chromatography in food

analysis, J Chromatogr A 1313 (2013) 24–36, http://dx.doi.org/10.1016/j.

chroma.2013.07.022

[24] K Taguchi, E Fukusaki, T Bamba, Simultaneous analysis for water- and

fat-soluble vitamins by a novel single chromatography technique unifying

supercritical fluid chromatography and liquid chromatography, J Chromatogr.

A 1362 (2014) 270–277, http://dx.doi.org/10.1016/j.chroma.2014.08.003

[25] T Yamada, Y Nagasawa, K Taguchi, E Fukusaki, T Bamba, 13 - polar lipid

profiling by supercritical fluid Chromatography/Mass spectrometry method,

in: M.U Ahmad, X Xu (Eds.), Polar Lipids, Elsevier, 2015, pp 439–462, http://

dx.doi.org/10.1016/B978-1-63067-044-3.50017-0

[26] E.L Regalado, C.J Welch, Separation of achiral analytes using supercritical

fluid chromatography with chiral stationary phases, TrAC Trends Anal Chem.

67 (2015) 74–81, http://dx.doi.org/10.1016/j.trac.2015.01.004

[27] C West, E Lemasson, S Bertin, P Hennig, E Lesellier, An improved

classification of stationary phases for ultra-high performance supercritical

fluid chromatography, J Chromatogr A 1440 (2016) 212–228, http://dx.doi.

org/10.1016/j.chroma.2016.02.052

[28] D.C Patel, M.F Wahab, D.W Armstrong, Z.S Breitbach, Advances in

high-throughput and high-efficiency chiral liquid chromatographic

separations, J Chromatogr A 1467 (2016) 2–18, http://dx.doi.org/10.1016/j.

chroma.2016.07.040

[29] A Grand-Guillaume Perrenoud, D Guillarme, J Boccard, J.L Veuthey, D.

Barron, S Moco, Ultra-high performance supercritical fluid chromatography

coupled with quadrupole-time-of-flight mass spectrometry as a performing

tool for bioactive analysis, J Chromatogr A 1450 (2016) 101–111, http://dx.

doi.org/10.1016/j.chroma.2016.04.053

[30] H Segawa, Y.T Iwata, T Yamamuro, K Kuwayama, K Tsujikawa, T Kanamori,

H Inoue, Differentiation of ring-substituted regioisomers of amphetamine

and methamphetamine by supercritical fluid chromatography, Drug Test.

Anal 9 (2017) 389–398, http://dx.doi.org/10.1002/dta.2040

[31] E Lemasson, S Bertin, C West, Use and practice of achiral and chiral

supercritical fluid chromatography in pharmaceutical analysis and

purification, J Sep Sci 39 (2016) 212–233, http://dx.doi.org/10.1002/jssc.

201501062

[32] A Grand-Guillaume Perrenoud, J Boccard, J.L Veuthey, D Guillarme, Analysis

of basic compounds by supercritical fluid chromatography: Attempts to

improve peak shape and maintain mass spectrometry compatibility, J.

Chromatogr A 1262 (2012) 205–213, http://dx.doi.org/10.1016/j.chroma.

2012.08.091

[33] F.M Chou, W.T Wang, G.T Wei, Using subcritical/supercritical fluid

chromatography to separate acidic, basic, and neutral compounds over an

ionic liquid-functionalized stationary phase, J Chromatogr A 1216 (2009)

3594–3599, http://dx.doi.org/10.1016/j.chroma.2009.02.057

[34] J Smuts, E Wanigasekara, D.W Armstrong, Comparison of stationary phases

for packed column supercritical fluid chromatography based upon ionic liquid

motifs: A study of cation and anion effects, Anal Bioanal Chem 400 (2011)

435–447, http://dx.doi.org/10.1007/s00216-011-4767-z

[35] R McClain, M.H Hyun, Y Li, C.J Welch, Design, synthesis and evaluation of

separations, J Chromatogr A 1302 (2013) 163–173, http://dx.doi.org/10 1016/j.chroma.2013.06.038

[36] C.G.A da Silva, C.H Collins, E Lesellier, C West, Characterization of stationary phases based on polysiloxanes thermally immobilized onto silica and metalized silica using supercritical fluid chromatography with the solvation parameter model, J Chromatogr A 1315 (2013) 176–187, http://dx.doi.org/ 10.1016/j.chroma.2013.09.055

[37] M Dunkle, C West, A Pereira, S Van Der Plas, E Lesellier, Synthesis of stationary phases containing pyridine, phenol, aniline and morpholine via click chemistry and their characterization and evaluation in supercritical fluid chromatography, Sci Chromatogr 6 (2014) 85–103, http://dx.doi.org/10 4322/sc.2014.023

[38] K Nagai, T Shibata, S Shinkura, A Ohnishi, Poly(butylene terephthalate) based novel achiral stationary phase investigated under supercritical fluid chromatography conditions, J Chromatogr A 1549 (2018) 85–92, http://dx doi.org/10.1016/j.chroma.2018.03.032

[39] H Ihara, W Dong, T Mimaki, M Nishihara, T Sakurai, M Takafuji, S Nagaoka, Poly(4-Vinylpyridine) as Novel Organic Phase for RP-HPLC Unique Selectivity for Polycyclic Aromatic Hydrocarbons, J Liq Chromatogr Relat Technol 26 (2003) 2491–2503, http://dx.doi.org/10.1081/JLC-120023796

[40] H Ihara, M Fukui, T Mimaki, A Shundo, W Dong, M Derakhshan, T Sakurai,

M Takafuji, S Nagaoka, Poly(4-vinylpyridine) as a reagent with silanol-masking effect for silica and its specific selectivity for PAHs and dinitropyrenes in a reversed phase, Anal Chim Acta 548 (2005) 51–57, http:// dx.doi.org/10.1016/j.aca.2005.05.056

[41] U.G Gautam, A Shundo, M.P Gautam, M Takafuji, H Ihara, High retentivity and selectivity for polycyclic aromatic hydrocarbons with

poly(4-vinylpyridine)-grafted silica in normal-phase high-performance liquid chromatography, J Chromatogr A 1189 (2008) 77–82, http://dx.doi.org/10 1016/j.chroma.2007.12.018

[42] K Nagai, S Shinkura, Stationary Phase for Supercritical Fluid Chromatography, WO2016/152996, 2016.

[43] C West, E Lemasson, K Nagai, T Shibata, P Franco, S Bertin, P Hennig, E Lesellier, Synthesis and characterization of novel polymer-based pyridine stationary phases for supercritical fluid chromatography, Submitted (n.d.) [44] K Kimata, K Iwaguchi, S Onishi, K Jinno, R Eksteen, K Hosoya, M Araki, N Tanaka, Chromatographic characterization of silica C18 packing materials Correlation between a preparation method and retention behavior of stationary phase, J Chromatogr Sci 27 (1989) 721–728, http://dx.doi.org/10 1093/chromsci/27.12.721

[45] M Mifune, Y Mori, M Onoda, A Iwado, N Motohashi, J Haginaka, Y Saito, Separation characteristics of aminopropyl silica gels modified with copper-phthalocyanine as high performance liquid chromatography stationary phase, Anal Sci 14 (1998) 1127–1131, http://dx.doi.org/10.2116/ analsci.14.1127

[46] K Jinno, H Mae, Molecular planarity recognition of polycyclic aromatic hydrocarbons in supercritical fluid chromatography, J High Resolut Chromatogr 13 (1990) 512–515, http://dx.doi.org/10.1002/jhrc.1240130715 [47] S Wise, W.J Bonnett, F.R Guenther, W.E May, A relationship between reversed-phase C18 liquid chromatographic retention and the shape of polycyclic aromatic hydrocarbons, J Chromatogr Sci 19 (1981) 457–465, http://dx.doi.org/10.1093/chromsci/19.9.457

[48] J Teubel, B Wüst, C.G Schipke, O Peters, M.K Parr, Methods in endogenous steroid profiling – A comparison of gas chromatography mass spectrometry (GC–MS) with supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS), J Chromatogr A 1554 (2018) 101–116, http://dx.doi.org/10 1016/j.chroma.2018.04.035

[49] E Lemasson, S Bertin, P Hennig, H Boiteux, E Lesellier, C West, Development

of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates Part I: optimization of mobile phase composition, J Chromatogr.

A 1408 (2015) 217–226, http://dx.doi.org/10.1016/j.chroma.2015.07.037 [50] M Shahruzzaman, M Takafuji, H Ihara, Porous silica particles grafted with an amphiphilic side-chain polymer as a stationary phase in reversed-phase high-performance liquid chromatography, J Sep Sci 38 (2015) 2403–2413, http://dx.doi.org/10.1002/jssc.201500189

[51] M Shahruzzaman, M Takafuji, H Ihara, Tuning of separation mode using pyridinium salt-branched ionic polymer-grafted silica as stationary phase in HPLC, Chem Lett 45 (2016) 13–15, http://dx.doi.org/10.1246/cl.150890 [52] H.C Brown, D.H McDANIEL, O HÄFLIGER, Dissociation constants, in: E.A BRAUDE, F.C NACHOD (Eds.), Determ Org Struct by Phys Methods, Academic Press, New York, 1955,

http://dx.doi.org/10.1016/C2013-0-12413-0 , p iii.

[53] R.M.C Dawson, D.C Elliott, W.H Elliott, K.M Jones, Data for Biochemical Research, Oxford University Press, New York, 1959.

[54] J.N Fairchild, D.W Brousmiche, J.F Hill, M.F Morris, C.A Boissel, K.D Wyndham, Chromatographic evidence of silyl ether formation (SEF) in supercritical fluid chromatography, Anal Chem 87 (2015) 1735–1742, http:// dx.doi.org/10.1021/ac5035709

[55] M Douˇsa, 1H-tetrazole-5-amine immobilized on substituted polymer Gel/Silica as a new stationary phase for hydrophilic interaction chromatography, Chromatographia 81 (2018) 349–357, http://dx.doi.org/10 1007/s10337-017-3452-6

Ngày đăng: 31/12/2022, 09:52

🧩 Sản phẩm bạn có thể quan tâm