Chinoline alkaloids found in Cinchona bark still play an important role in medicine, for example as antimalarial and antiarrhythmic drugs. For thefirsttime Supercritical Fluid Chromatography has been utilized for their separation.
Trang 1Journal of Chromatography A, 1554 (2018) 117–122
jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a
Adele Murauer, Markus Ganzera∗
a r t i c l e i n f o
Keywords:
Quinine
Quantification
a b s t r a c t
(http://creativecommons.org/licenses/by/4.0/)
1 Introduction
Cinchonaecortex,whichoriginatesfromseveralrelatedspecies
ofthegenusCinchona(C.pubescens,C.calisaya,C.ledgerianaand
hybrids)accordingtotheEuropeanPharmacopeia, wasusedas
antimalarialdrugbytheindigenouspopulationofSouthAmerica
forcenturies.Itbecametheprimaryremedyagainstthisdisease
worldwide,and only afterWorldWar 2 syntheticantimalarials
likechloroquinereplacedthenaturalproduct[1].However,dueto
increasingresistancesandalsoavailabilityissuesquinineisstill
rel-evantformalariatreatmenttoday[2];besidesthatthecompound
isaddedtobeveragesasbitteragent[3],servesacatalystin
asym-metricorganicsynthesis[4],oractsaschiralselectorinstationary
phases[5].Thealkaloid patterninCinchonabarkisrather
com-plexwithmorethan30knownrepresentatives[6].Theymainly
arechinolinederivatives,includingthediastereomericpairs
qui-nine/quinidineandcinchonine/cinchonidine.Additionalalkaloids
are,amongothers,theirdihydro-derivatives
Notonlyduetothemedicinalandcommercialimportanceof
Cinchonabarkbutalsothenarrowtherapeuticwindowofquinine
many analytical studies focused on the determination of
alka-loidsinthecrudedrug.Thecompendialmethodinthe9thedition
of the Ph.Eu is based ona photometric determination of qui-nine(348nm)andcinchonine-type(316nm)alkaloids.Research papersmainlyemphasizedontheseparationofthedominant rep-resentativesutilizingTLC[7],isotachophoresis[8],aqueous[9]and non-aqueousCE[10],vibrationalspectroscopy[11],NMR[12]and HPLC[3,6,13–16].Forexample,Hoffmannetal.utilized achiral strongcationexchangematerialtoexcellentlyresolveeight Cin-chonaalkaloidsin15min,yetanapplicationtoplantmaterialis missing[16].Thelatterwaspresentedinthemostrecentstudy,
inwhich Holmfredetal reportedontheseparation ofthefour mainisomerson2.6mC-18coreshellmaterial(KinetexXB-C18)
in25min[17].WhetherSupercriticalFluidChromatography(SFC)
is apossibleand equivalentalternativehasnever been investi-gated.Inthepastthetechniquewaspredominantlyusedforthe analysisofnon-polarcompoundslikefattyacids[18],triglycerides [19]orcarotenoids[20].Recentpublicationspointtoamuchwider rangeofpossibleapplicationsalsoincludingpolarnaturalproducts [21,22]andalkaloids[23–25].Therefore,weattemptedtoseparate andquantifythealkaloidsinCinchonabarkbySFC
2 Materials and methods
2.1 Standardsandreagents SixCinchonaalkaloids(compounds1-6,seeFig.1forstructures) withapurity≥98%wereavailableasstandards;theywere pur-https://doi.org/10.1016/j.chroma.2018.04.038
Trang 2Fig 1.Chemical structure of the assayed Cinchona alkaloids.
chasedfrom Phytolab(Vestenbergsreuth, Germany;compounds
1and 2)and SigmaAldrich(St.Louis,MO,USA; compounds
3-6).Plant samples(CC-2017-1 toCC-2017-4)were bought2017
indifferentpharmaciesinInnsbruck,Austria;voucherspecimens
aredepositedattheInstituteofPharmacy,Pharmacognosy,
Uni-versityofInnsbruck.CompressedcarbondioxideforSFCanalysis
had a purity of ≥99.995% (4.5 grade) and came from Messer
(Gumpoldskirchen,Austria).Allsolventsandreagents(methanol,
acetonitrile, diethylamine, trimethylamine, sodium hydroxide,
aceticacid,ammoniumacetate,phosphoricacid)utilizedin this
studywereofanalyticalgradeandpurchasedfromMerck
(Darm-stadt,Germany).AnArium 611water purificationsystemfrom
Sartorius(Göttingen,Germany)producedtherequiredHPLCgrade
water
2.2 Samplepreparation
Theplantmaterial(CinchonaecortexPh.Eu.)wasfinely
pulver-izedin amilland150mgwereextractedfollowingapublished
protocol[6].Extractionsolventwasamethanol/0.1MNaOH
mix-turein theratio 49/1; thesampleswere extracted three-times
with10mlofthismixturebysonication(BandelinSonorex,Berlin,
Germany)for20mineach.Aftereachsteptheywerecentrifuged
for 10min at 1500g, and the clear supernatant combined in a
50mlvolumetricflask.Thenthelatterwasfilledtovolumewith
theextractionsolvent.Samplesolutionsweremembranefiltered
rightbeforeanalysis(0.45mcelluloseacetatemembrane,VWR,
Vienna,Austria)andinjectedintriplicate.Ifstoredat4◦Csample
andstandardsolutionsarestableforatleast2weeks
2.3 Analyticalmethod
For all experiments an Acquity UPC2-SFC instrument from
Waters(Milford,MA,USA),equippedwithconvergencemanager,
columnoven,samplemanager,binarysolventmanagerandPDA
detectorwasused;theoperatingsoftwarewasEmpower3
Opti-mumseparationofthesixstandardswasachievedonanAcquity
UPC2TorusDEAcolumn(3.0×100mm,1.7m)fromWaters,
pro-tectedbyaguardfilter(criticalclean;Waters).Themobilephase
comprisedCO (A)and0.8%diethylamineinamixtureof10%
ace-tonitrileand90%methanol(B).Isocraticseparationwasachieved
by maintaininga concentration of 97.7A/2.3Bover 10min.The injectedsamplevolumewas1l,whileflowrate,column temper-atureandABPRpressureweresetto1.8ml/min,15◦Cand150bar (2175psi).Thecompoundsofinterestweredetectedat275nm Thesamplemanagerwasmaintainedat10◦C, andamixtureof methanol/2-propanol(1:1) andmethanolservedasa weakand strongwash,respectively
2.4 Methodvalidation
ToassurethatthedevelopedSFCmethodconformsto regula-torystandardsitwasvalidatedaccordingtoICHguidelines[26] Fortheconstructionofcalibrationcurvesaswellastodetermine thelinearrangeapproximately1mgofeachstandardwas accu-ratelyweightedanddissolvedin1mlmethanol(stocksolution) Thissolution wasused to preparefurthercalibration levelsby serialdilutionintheratioof1:1withthesamesolvent.LOD(limit
ofdetection)andLOQ(limitofquantification)valueswere calcu-latedasdescribedintheguidelinesbasedonstandarddeviation
oftheresponseandslopeofthecalibrationcurve.Selectivitywas confirmedby utilizing PDA data and thepeak purity option of theoperatingsoftware.Precisionwasassuredbypreparingand analyzing five solutions of sample CC-2017-2 oneach of three consecutivedays.Variationswithinoneday(intra-dayprecision) andwithinthreedays(inter-dayprecision)werecalculatedbased
onthepeakarea Accuracywasinvestigated byspikingsample CC-2017-2 withdifferent concentrations of allstandards (high, mediumandlowspike).Spikedsampleswerethenextractedand analyzedasproposed.Recoveryrateswerecalculatedby compar-ingtheactuallyfoundconcentrationswiththetheoreticallypresent ones.Allresultsofthevalidationexperimentsaresummarizedin Table1
3 Results and discussion
Sinceitsbeginningsinthe1960sSFChasevolvedintoawidely utilizedandefficientseparationtechnique.Abetter understand-ingoftheunderlyingtheory,togetherwithsignificantlyimproved instrumentsand stationaryphaseshave ledtomanysuccessful
Trang 3A Murauer, M Ganzera / J Chromatogr A 1554 (2018) 117–122 119
Table 1
y = 297.1 x +848.7 y = 315.1 x +182.1 y = 267.6 x −189.4 y = 273.4 x −34.1 y = 239.1 x −679.9 y = 252.8 x −724.0
Precision
Accuracyd
separationsandabroadfield ofapplications.However,relevant
medicinalplants,whoseingredientsseemtobenotsuitableforSFC
becauseoftheirpolarity,have neverbeeninvestigatedtilldate
OneofthemisCinchonabark,adrugwhichisanalytically
chal-lengingasitcontainsdiastereomericchinolinealkaloidsasactive
constituents
3.1 Methoddevelopment
TheoptimumSFCseparationofsixmajorCinchonaalkaloids,
namelydihydroquinidine(1), dihydroquinine (2),quinidine (3),
quinine(4),cinchonine(5)andcinchonidine(6),withinlessthan
7min is shown in Fig.2A During methoddevelopmentit was
observed that this result is only feasible by one specific
com-binationof mobileand stationary phase Concerning thelatter,
eightdifferentSFCcolumnsfromWaterswithidenticaldimensions
(3.0×100mm)andaparticlesize≤2mweretested:fourfromthe
Torusseries,i.e.2-PIC,Diol,1-AAandDEA,andfourViridiscolumns
(BEH,BEH2-EP,CSHFluoro-PhenylandHSSC18SB).According
toWestand colleagues,who classifiedmore than30ultra-high
performanceSFCstationaryphasesusingamodifiedLSER(linear
solvationenergyrelationship)model,fromallthestationaryphases
availableinthisstudyTorusDEA(diethylamine)materialhasthe
highestbasiccharacter[27].Forthismaterialtherelevanta-term
(basicity)ishigherthan2.6,whereasforexampleforViridisphases
itrangesfrom0.3(CSHFluoro-Phenyl)to1.4(BEH2-EP)
Accord-ingly,thismaterialisdesignedtoprovidesuperiorpeakshapefor
bases[28].WithpKavalues around8.5[29] thetargetanalytes
aresuchcompounds,andthereforeitseemedlogicthatthis
sta-tionaryphasewasselectedforfurtherexperiments.OnlyonTorus
DEAmaterialthecompoundscouldbeseparatedwithacceptable
resolutionandpeakshape,onothersincludingallViridiscolumns
thecompoundselutedasbroadandoverlappingsignalsonly(see
supportinginformation)
Concerningthemobilephase itwasrequiredtoadd organic
solventsanddiethylamineasmodifiers.ThepolarityofpureCO2
is similar to hexane [30], and therefore a small percentage of
methanol wasrequired;the combination withacetonitrilewas
advantageousintermsofresolution(Fig.2B),thusaMeOH/ACN
mixtureintheratioof9:1wasemployed.However,withoutan
alkalineeluentnoacceptableresultwaspossible.Thisobservation
wasin agreementtoliterature,whereanenhancedSFC
separa-tionofbasicsubstanceswithanalkalinemobilephaseisreported
[31].Theauthorsattributedthiseffecttoreducedsecondaryionic
interactionswithresidualsilanols.Forthecurrentapplicationthe
additionof0.8%diethylamine(DEA)tothemodifier(i.e.the
afore-mentionedmixtureofMeOHandACN)showedtobetheoptimum
Intermsofelutionmodeconditionshadtobefine-tunedaswell Evenwithaveryflatgradientthefirstfoursignalsmerged,sothat isocraticconditionshadtobeselected;97.7%phaseA(CO2)and 2.3%B(MeOH,ACNandDEA)providedthebestresolution.Itis note-worthytosaythatalreadyaslightchange(e.g.to2.5%B;Fig.2C) hadanegativeimpactontheseparation Loweringthemodifier concentrationto2.0%resultedinprolongedretentiontimes,yet compounds2and3graduallyoverlapped
Anotherparameterwithsignificantinfluence onthe separa-tionofthesixalkaloidswascolumntemperature(Fig.2D).Rather surprisingly,byloweringcolumntemperaturedownto15◦C reten-tion times steadily increased.The opposite would beexpected becauseatlowertemperaturesfluiddensityincreases,resultingin reducedretention.Apossibleexplanationfortheobservedeffects mightbechangesinthepolarityofthestationaryphaseduetoa temperature-dependentadsorptionofmobilephasecomponents [32].Itisobviousthatcarbondioxidewasnotpresentinthe super-critical stateanymore,becauseitscritical temperatureis 31◦C; however,workinginthesubcriticalstagehasnosignificant dis-advantages and it is described (butnot necessarily mentioned) quiteoften[33].Furtherchromatogramsindicatingtherelevance
ofindividualmethodparametersarecompiledassupplementary material.Aninterestingfactshownthereistheinfluenceofapplied backpressure(ABPR).Thissettingisusuallyofminorimportance, yetinthecurrentapplicationitmodifiedresolution,particularly betweencompounds2and3.Thelattercouldberesolvedbestat
anappliedABPRof150bar
3.2 Methodvalidation Assaydevelopmentwasfollowedbymethodvalidation;data presentedinTable1confirmsthatallrequirementswere satisfac-torilymetinthisrespect.Selectivitywasdeducedbyseveralfacts First,structurallycloselyrelatedcompounds(including diastere-omers)couldberesolved,second,nosignsofco-elutions(e.g.peak shoulders)werevisible,andthird,thePDAdatawasvery consis-tentwithinindividualpeaks.Afinalconfirmationofpeakpurity
by SFC-MSwasnotpossible,because thistechnical option was notavailable.Forallstandardscalibrationcurveswerelinearfrom approx 1000–30g/ml, withdetermination coefficients always beinghigherthan0.999.LODvaluesshowedtobeintherangefrom 0.6(5)to2.4(2)g/ml,LOQvaluesvariedfrom1.9–7.3g/ml.They naturallycannotcompetewiththoseachievablebyfluorescence detection(e.g.LODforquinineis2fmol,[6]);however,theyare comparabletoconventionalHPLC-UVasLOQvaluesof5g/gare statedinreference[17].Precisionwasinvestigatedbyrepeatedly assayingsampleCC-2017-2underoptimizedextractionand
Trang 4sepa-Fig 2. Separation of Cinchona alkaloids by SFC; optimum conditions(A;column: Acquity UPC 2 Torus DEA 1.7 m, 3.0 × 100 mm; mobile phase: CO 2 (A) and 0.8% diethylamine
rationconditions.Intra-day(≤2.2%)aswellasinter-dayvariations
(≤3.0%)wereacceptableandtypicalforinvestigatingplant
mate-rial,whichusuallyshowssomedegreeofinhomogeneity.Lastbut
notleast,accuracywasdeterminedinspikingexperiments(high
spike:200g/ml,mediumspike:100g/ml,lowspike:50g/ml)
Recoveryrateswerenotlowerthan97.2%(3,lowspike)andnot
higherthan103.7%(6,highspike),indicatingvalidityofthis
param-etertoo
3.3 Analysisofthesamples FoursamplesofdriedandmilledCinchonabark,allofthemwith Ph.Eu.quality,wereavailablefor quantification.Concerningthe optimumextractionprotocolaproceduredescribedbyGattietal wasadopted[6].Itutilizesalkalinemethanolandsonication,and showedtobeadvantageousoverotherslikesoxhletextractionin theirworkduetothemildconditionsapplied;theobserved
Trang 5quan-A Murauer, M Ganzera / J Chromatogr A 1554 (2018) 117–122 121
Table 2
cinchonidine(6) 0.90 (0.91) 1.15 (1.47) 1.26 (1.14) 1.05 (0.89)
inFig.3.ThecompiledquantitativeresultspresentedinTable2
indicate that all of the investigated specimens were of similar
composition.Threeof thesix standardswereclearly assignable
by matching retention times and UV-spectra; if these criteria
werenotmet,e.g.peaksweretoosmallforprovidingmeaningful
spectra,respectivesignalswerenotconsideredforquantitation
Theassignedcompoundswerequinine,cinchonineand
cinchoni-dine, with the latter always being the least abundant alkaloid
(0.90%–1.26%).Mostdominantwascinchonine(1.87%–2.30%),
fol-lowedbyquinine,whichrangedfrom1.59%to1.89%;anexcellent
repeatabilitywasobservedwhile performingtheseexperiments
(rel≤1.55, n=3).The total alkaloid content variedfrom 4.75%
(sampleCC-2017-3)to5.20%(sampleCC-2017-2)
4 Conclusion
Thisstudyisanotherprooffortheexcellentseparationefficiency
andversatilityofSFC,especiallyinthefieldofnaturalproducts.The
determinationofalkaloidsinCinchonabarkisachallengingtask,
becausethetargetanalytesarestructurallyverysimilarandthe
investigatedmatrixiscomplexlikemostbiologicalsamples.Due
tothepersistingpracticalrelevance ofthedrugmany attempts
havebeenmadetodeterminethesecompounds,mostlybyusing
conventionalRP-HPLCincombinationwithfluorescencedetection
Thisassuredanexcellentsensitivity;however,therequired
anal-ysistimewasintherangefrom15[16]to50min[6],whenonly
recentpublicationsareconsidered.Thatacomparableseparation
isalsofeasibleinlessthan7minbyusinga“greentechnology”has beenshowninthecurrentstudy.Thiswasonlypossibleafter metic-ulousmethodoptimization,butoncecompleted,areproducible, accurateandruggedsystemwasavailableforroutineuse;method validationconfirmedthisestimation.Inthesamplesanalyzedthree outofsixstandardscouldbeassigned.Thisislessthaninprevious reports,butexplainablebythedifferentdetectiontechniquesused However,ifsuitableinstrumentationispresent(e.g.fluorescence detectorsforSFCareavailable)therewillbeprobablyno differ-enceinthenumberofidentifiedcompounds.Withtheavailable instrumentationquinine,cinchonineandcinchonidinecould eas-ilybeassignedincrudeCinchonabarkextracts.Thequantitative resultswerewellcomparabletopublisheddata,whichfor exam-plereportthefollowingvaluesforadrugwithPh.EU.quality:1.80% quinine,1.65%cinchonine,and1.25%cinchonidine[17].This suc-cessfulapplicationofSFC,onfortheutilizedtechnique“untypical” compounds,shouldraisefurtherinteresttofullyexplorethe poten-tialofthisseparationtechnique,whichdefinitelyisnotlimitedto the“classics”likecarotenoids,fattyacidsorterpenes.Thisandother studiesonnaturalproductslikeanthraquinones[34],kavalactones [35]orfurocoumarins[36]aregoodindicatorsactually
Conflict of interest
Theauthorsdeclarenoconflictofinterest
Acknowledgement
TheauthorswouldliketothanktheAustrianScienceFund(FWF, projectP269170)forfinancialsupport
Appendix A Supplementary data
Supplementarydataassociatedwiththisarticlecanbefound,
intheonlineversion,athttps://doi.org/10.1016/j.chroma.2018.04
038
References
[1] J Achan, A.O Talisuna, A Erhart, A Yeka, J.K Tibenderana, F.N Baliraine, P.J Rosenthal, U D’Alessandro, Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria, Malar J 10 (2011) 144.
Trang 6[2] N.G Sanders, D.J Meyers, D.J Sullivan, Antimalarial efficacy of
hydroxyethylapoquinine (SN-119) and its derivatives, Antimicrob Agents
Chemother 58 (2014) 820–827.
[3] M Horie, M Oishi, F Ishikawa, T Shindo, A Yasui, O Shuzo, K Ito, Liquid
chromatographic analysis of Cinchona alkaloids in beverages, J AOAC Int 89
(2006) 1042–1047.
[4] E.M.O Yeboah, S.O Yeboah, G.S Singh, Recent applications of Cinchona
alkaloids and their derivatives as catalysts in metal-free asymmetric
synthesis, Tetrahedron 67 (2011) 1725–1762.
[5] G Lajko, T Orosz, N Grecso, B Fekete, M Palko, F Fulop, W Lindner, P Antal,
I Ilisz, High-performance liquid chromatographic enantioseparation of cyclic
ß-aminohydroxamic acids on zwitterionic chiral stationary phases based on
Cinchona alkaloids, Anal Chim Acta 921 (2016) 84–94.
[6] R Gatti, M.G Gioia, V Cavrini, Determination of Cinchona alkaloids and
vitamin B6 by high-performance liquid chromatography with fluorescence
detection, Anal Chim Acta 512 (2004) 85–91.
[7] T Mroczek, K Glowniak, TLC and HPTLC assay for quinoline and quinuclidine
alkaloids in Cinchonae cortex and pharmaceutical preparations, J Planar
Chromatogr 13 (2000) 457–462.
[8] H Klein, T Teichmann, Determination of Cinchona alkaloids in
pharmaceutical preparations by isotachophoresis (iontophoresis), Pharm Ztg.
132 (1987) 1131–1135.
[9] W Zhao, Y Li, Y Zhang, Y Hongfen, H Yu, A Chen, Determination of Cinchona
alkaloids by capillary electrophoresis with novel complex formation, Anal.
Lett 49 (2016) 1176–1183.
[10] W Buchberger, D Gstöttenmayr, M Himmelsbach, Determination of
Cinchona alkaloids by non-aqueous CE with MS detection, Electrophoresis 31
(2010) 1208–1213.
[11] M Romon, K Chruszcz-Lipska, M Baranska, Vibrational analysis of Cinchona
alkaloids in the solid state and aqueous solutions, J Raman Spectrosc 46
(2015) 1041–1052.
[12] A Yilmaz, N.T Nyberg, J.W Jaroszewski, Extraction of alkaloids for
NMR-based profiling: exploratory analysis of an archaic Cinchona bark collection,
Planta Med 78 (2012) 1885–1890.
[13] A.S Fabiano-Tixier, A Elomri, A Blanckaert, E Seguin, E Petitcolas, F Chemat,
Rapid and green analytical method for the determination of quinoline
alkaloids from Cinchona succirubra based on microwave-integrated extraction
and leaching (MIEL) prior to high performance liquid chromatography, Int J.
Mol Sci 12 (2011) 7846–7860.
[14] D.V McCalley, Analysis of Cinchona alkaloids by high-performance liquid
chromatography and other techniques, J Chromatogr A 967 (2002) 1–19.
[15] D.V McCalley, Quantitative analysis of alkaloids from Cinchona bark by
high-performance chromatography, Analyst 115 (1990) 1355–1358.
[16] C.V Hoffmann, M Lämmerhofer, W Lindner, Separation of Cinchona alkaloids
on a novel strong cation-exchange-type chiral stationary phase – comparison
with commercially available strong cation exchanger and reversed-phase
packing materials, Anal Bioanal Chem 393 (2009) 1257–1265.
[17] E Holmfred, C Cornett, C Maldonado, N Ronsted, S.H Hansen, An optimized
method for routine separation and quantification of major alkaloids in cortex
Cinchona by HPLC coupled with UV and fluorescence detection, Phytochem.
Anal 28 (2017) 374–380.
[18] M Ashraf-Khorassani, G Isaac, P Rainville, K Fountain, L.T Taylor, Study of
ultrahigh performance supercritical fluid chromatography to measure free
fatty acids without fatty acid ester preparation, J Chromatogr B 997 (2015)
45–55.
[19] E Lesellier, A Latos, A.L de Oliveira, Ultra high efficiency/low pressure supercritical fluid chromatography with superficially porous particles for triglyceride separation, J Chromatogr A 1327 (2014) 141–148.
[20] D Giuffrida, P Donato, P Dugo, L Mondello, Recent analytical techniques advances in the carotenoids and their derivatives determination in various matrixes, J Agric Food Chem 66 (2018) 3302–3307.
[21] Y Huang, T Zhang, Y Zhao, H Zhou, G Tang, M Fillet, J Crommen, Z Jiang, Simultaneous analysis of nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry, J Pharm Biomed Anal 144 (2017) 213–219.
[22] J Yang, L Zhu, Y Zhao, Y Xu, Q Sun, S Liu, C Liu, B Ma, Separation of furostanol saponins by supercritical fluid chromatography, J Pharm Biomed Anal 145 (2017) 71–78.
[23] W Yang, Y Zhang, H Pan, C Yao, J Hou, S Yao, L Cai, R Feng, Supercritical fluid chromatography for separation and preparation of tautomeric 7-epimeric spiro oxindole alkaloids from Uncaria macrophylla, J Pharm Biomed Anal 134 (2017) 352–360.
[24] Q Fu, Z Li, C Sun, H Xin, Y Ke, Y Jin, X Liang, Rapid and simultaneous analysis of sesquiterpene pyridine alkaloids from Tripterygium wilfordii Hook.
f using supercritical fluid chromatography-diode array detector-tandem mass spectrometry, J Supercrit Fluids 104 (2015) 85–93.
[25] A Hartmann, M Ganzera, Supercritical fluid chromatography – theoretical background and applications on natural products, Planta Med 81 (2015) 1570–1581.
[26] http://www.ich.org/products/guidelines.html , (Accessed 6 March 2018) [27] C West, E Lemasson, S Bertin, P Henning, E Lesellier, An improved classification of stationary phases for ultra-high performance supercritical fluid chromatography, J Chromatogr A 1440 (2016) 212–228.
[28] http://www.waters.com/waters/en US/SFC-Columns , (Accessed 6 March 2018).
[29] D.C Warhurst, J.C Craig, I.S Adagu, D.J Meyer, S.Y Lee, The relationship of physico-chemical properties and structure to the differential antiplasmodial activity of Cinchona alkaloids, Malaria J 2 (2003) 26.
[30] T Bamba, Application of supercritical fluid chromatography to the analysis of hydrophobic metabolites, J Sep Sci 31 (2008) 1274–1278.
[31] A Grand-Guillaume Perrenoud, J Boccard, J.L Veuthey, D Guillarme, Analysis
of basic compounds by supercritical fluid chromatography: attempts to improve peak shape and maintain mass spectrometry compatibility, J Chromatogr A 1262 (2012) 205–213.
[32] E Lesellier, C West, The many faces of packed column supercritical fluid chromatography – a critical review, J Chromatogr A 1382 (2015) 2–46.
[33] E Lesellier, Retention mechanisms in super/subcritical fluid chromatography
on packed columns, J Chromatogr A 1216 (2009) 1881–1890.
[34] D Aichner, M Ganzera, Analysis of anthraquinones in rhubarb (Rheum palmatum and Rheum officinale) by supercritical fluid chromatography, Talanta 144 (2015) 1239–1244.
[35] A Murauer, M Ganzera, Quantitative determination of lactones in Piper methysticum (Kava-Kava) by supercritical fluid chromatography, Planta Med.
83 (2017) 1053–1157.
[36] C Desmortreux, M Rothaupt, C West, E Lesellier, Improved separation of furocoumarins in essential oils by supercritical fluid chromatography, J Chromatogr A 1216 (2009) 7088–7095.