1. Trang chủ
  2. » Giáo án - Bài giảng

Quantitative determination of major alkaloids in Cinchona bark by Supercritical Fluid Chromatography

6 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Quantitative determination of major alkaloids in Cinchona bark by Supercritical Fluid Chromatography
Tác giả Adele Murauer, Markus Ganzera
Trường học University of Innsbruck
Chuyên ngành Pharmacognosy
Thể loại journal article
Năm xuất bản 2018
Thành phố Innsbruck
Định dạng
Số trang 6
Dung lượng 1,07 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Chinoline alkaloids found in Cinchona bark still play an important role in medicine, for example as antimalarial and antiarrhythmic drugs. For thefirsttime Supercritical Fluid Chromatography has been utilized for their separation.

Trang 1

Journal of Chromatography A, 1554 (2018) 117–122

jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a

Adele Murauer, Markus Ganzera∗

a r t i c l e i n f o

Keywords:

Quinine

Quantification

a b s t r a c t

(http://creativecommons.org/licenses/by/4.0/)

1 Introduction

Cinchonaecortex,whichoriginatesfromseveralrelatedspecies

ofthegenusCinchona(C.pubescens,C.calisaya,C.ledgerianaand

hybrids)accordingtotheEuropeanPharmacopeia, wasusedas

antimalarialdrugbytheindigenouspopulationofSouthAmerica

forcenturies.Itbecametheprimaryremedyagainstthisdisease

worldwide,and only afterWorldWar 2 syntheticantimalarials

likechloroquinereplacedthenaturalproduct[1].However,dueto

increasingresistancesandalsoavailabilityissuesquinineisstill

rel-evantformalariatreatmenttoday[2];besidesthatthecompound

isaddedtobeveragesasbitteragent[3],servesacatalystin

asym-metricorganicsynthesis[4],oractsaschiralselectorinstationary

phases[5].Thealkaloid patterninCinchonabarkisrather

com-plexwithmorethan30knownrepresentatives[6].Theymainly

arechinolinederivatives,includingthediastereomericpairs

qui-nine/quinidineandcinchonine/cinchonidine.Additionalalkaloids

are,amongothers,theirdihydro-derivatives

Notonlyduetothemedicinalandcommercialimportanceof

Cinchonabarkbutalsothenarrowtherapeuticwindowofquinine

many analytical studies focused on the determination of

alka-loidsinthecrudedrug.Thecompendialmethodinthe9thedition

of the Ph.Eu is based ona photometric determination of qui-nine(348nm)andcinchonine-type(316nm)alkaloids.Research papersmainlyemphasizedontheseparationofthedominant rep-resentativesutilizingTLC[7],isotachophoresis[8],aqueous[9]and non-aqueousCE[10],vibrationalspectroscopy[11],NMR[12]and HPLC[3,6,13–16].Forexample,Hoffmannetal.utilized achiral strongcationexchangematerialtoexcellentlyresolveeight Cin-chonaalkaloidsin15min,yetanapplicationtoplantmaterialis missing[16].Thelatterwaspresentedinthemostrecentstudy,

inwhich Holmfredetal reportedontheseparation ofthefour mainisomerson2.6␮mC-18coreshellmaterial(KinetexXB-C18)

in25min[17].WhetherSupercriticalFluidChromatography(SFC)

is apossibleand equivalentalternativehasnever been investi-gated.Inthepastthetechniquewaspredominantlyusedforthe analysisofnon-polarcompoundslikefattyacids[18],triglycerides [19]orcarotenoids[20].Recentpublicationspointtoamuchwider rangeofpossibleapplicationsalsoincludingpolarnaturalproducts [21,22]andalkaloids[23–25].Therefore,weattemptedtoseparate andquantifythealkaloidsinCinchonabarkbySFC

2 Materials and methods

2.1 Standardsandreagents SixCinchonaalkaloids(compounds1-6,seeFig.1forstructures) withapurity≥98%wereavailableasstandards;theywere pur-https://doi.org/10.1016/j.chroma.2018.04.038

Trang 2

Fig 1.Chemical structure of the assayed Cinchona alkaloids.

chasedfrom Phytolab(Vestenbergsreuth, Germany;compounds

1and 2)and SigmaAldrich(St.Louis,MO,USA; compounds

3-6).Plant samples(CC-2017-1 toCC-2017-4)were bought2017

indifferentpharmaciesinInnsbruck,Austria;voucherspecimens

aredepositedattheInstituteofPharmacy,Pharmacognosy,

Uni-versityofInnsbruck.CompressedcarbondioxideforSFCanalysis

had a purity of ≥99.995% (4.5 grade) and came from Messer

(Gumpoldskirchen,Austria).Allsolventsandreagents(methanol,

acetonitrile, diethylamine, trimethylamine, sodium hydroxide,

aceticacid,ammoniumacetate,phosphoricacid)utilizedin this

studywereofanalyticalgradeandpurchasedfromMerck

(Darm-stadt,Germany).AnArium 611water purificationsystemfrom

Sartorius(Göttingen,Germany)producedtherequiredHPLCgrade

water

2.2 Samplepreparation

Theplantmaterial(CinchonaecortexPh.Eu.)wasfinely

pulver-izedin amilland150mgwereextractedfollowingapublished

protocol[6].Extractionsolventwasamethanol/0.1MNaOH

mix-turein theratio 49/1; thesampleswere extracted three-times

with10mlofthismixturebysonication(BandelinSonorex,Berlin,

Germany)for20mineach.Aftereachsteptheywerecentrifuged

for 10min at 1500g, and the clear supernatant combined in a

50mlvolumetricflask.Thenthelatterwasfilledtovolumewith

theextractionsolvent.Samplesolutionsweremembranefiltered

rightbeforeanalysis(0.45␮mcelluloseacetatemembrane,VWR,

Vienna,Austria)andinjectedintriplicate.Ifstoredat4◦Csample

andstandardsolutionsarestableforatleast2weeks

2.3 Analyticalmethod

For all experiments an Acquity UPC2-SFC instrument from

Waters(Milford,MA,USA),equippedwithconvergencemanager,

columnoven,samplemanager,binarysolventmanagerandPDA

detectorwasused;theoperatingsoftwarewasEmpower3

Opti-mumseparationofthesixstandardswasachievedonanAcquity

UPC2TorusDEAcolumn(3.0×100mm,1.7␮m)fromWaters,

pro-tectedbyaguardfilter(criticalclean;Waters).Themobilephase

comprisedCO (A)and0.8%diethylamineinamixtureof10%

ace-tonitrileand90%methanol(B).Isocraticseparationwasachieved

by maintaininga concentration of 97.7A/2.3Bover 10min.The injectedsamplevolumewas1␮l,whileflowrate,column temper-atureandABPRpressureweresetto1.8ml/min,15◦Cand150bar (2175psi).Thecompoundsofinterestweredetectedat275nm Thesamplemanagerwasmaintainedat10◦C, andamixtureof methanol/2-propanol(1:1) andmethanolservedasa weakand strongwash,respectively

2.4 Methodvalidation

ToassurethatthedevelopedSFCmethodconformsto regula-torystandardsitwasvalidatedaccordingtoICHguidelines[26] Fortheconstructionofcalibrationcurvesaswellastodetermine thelinearrangeapproximately1mgofeachstandardwas accu-ratelyweightedanddissolvedin1mlmethanol(stocksolution) Thissolution wasused to preparefurthercalibration levelsby serialdilutionintheratioof1:1withthesamesolvent.LOD(limit

ofdetection)andLOQ(limitofquantification)valueswere calcu-latedasdescribedintheguidelinesbasedonstandarddeviation

oftheresponseandslopeofthecalibrationcurve.Selectivitywas confirmedby utilizing PDA data and thepeak purity option of theoperatingsoftware.Precisionwasassuredbypreparingand analyzing five solutions of sample CC-2017-2 oneach of three consecutivedays.Variationswithinoneday(intra-dayprecision) andwithinthreedays(inter-dayprecision)werecalculatedbased

onthepeakarea Accuracywasinvestigated byspikingsample CC-2017-2 withdifferent concentrations of allstandards (high, mediumandlowspike).Spikedsampleswerethenextractedand analyzedasproposed.Recoveryrateswerecalculatedby compar-ingtheactuallyfoundconcentrationswiththetheoreticallypresent ones.Allresultsofthevalidationexperimentsaresummarizedin Table1

3 Results and discussion

Sinceitsbeginningsinthe1960sSFChasevolvedintoawidely utilizedandefficientseparationtechnique.Abetter understand-ingoftheunderlyingtheory,togetherwithsignificantlyimproved instrumentsand stationaryphaseshave ledtomanysuccessful

Trang 3

A Murauer, M Ganzera / J Chromatogr A 1554 (2018) 117–122 119

Table 1

y = 297.1 x +848.7 y = 315.1 x +182.1 y = 267.6 x −189.4 y = 273.4 x −34.1 y = 239.1 x −679.9 y = 252.8 x −724.0

Precision

Accuracyd

separationsandabroadfield ofapplications.However,relevant

medicinalplants,whoseingredientsseemtobenotsuitableforSFC

becauseoftheirpolarity,have neverbeeninvestigatedtilldate

OneofthemisCinchonabark,adrugwhichisanalytically

chal-lengingasitcontainsdiastereomericchinolinealkaloidsasactive

constituents

3.1 Methoddevelopment

TheoptimumSFCseparationofsixmajorCinchonaalkaloids,

namelydihydroquinidine(1), dihydroquinine (2),quinidine (3),

quinine(4),cinchonine(5)andcinchonidine(6),withinlessthan

7min is shown in Fig.2A During methoddevelopmentit was

observed that this result is only feasible by one specific

com-binationof mobileand stationary phase Concerning thelatter,

eightdifferentSFCcolumnsfromWaterswithidenticaldimensions

(3.0×100mm)andaparticlesize≤2␮mweretested:fourfromthe

Torusseries,i.e.2-PIC,Diol,1-AAandDEA,andfourViridiscolumns

(BEH,BEH2-EP,CSHFluoro-PhenylandHSSC18SB).According

toWestand colleagues,who classifiedmore than30ultra-high

performanceSFCstationaryphasesusingamodifiedLSER(linear

solvationenergyrelationship)model,fromallthestationaryphases

availableinthisstudyTorusDEA(diethylamine)materialhasthe

highestbasiccharacter[27].Forthismaterialtherelevanta-term

(basicity)ishigherthan2.6,whereasforexampleforViridisphases

itrangesfrom0.3(CSHFluoro-Phenyl)to1.4(BEH2-EP)

Accord-ingly,thismaterialisdesignedtoprovidesuperiorpeakshapefor

bases[28].WithpKavalues around8.5[29] thetargetanalytes

aresuchcompounds,andthereforeitseemedlogicthatthis

sta-tionaryphasewasselectedforfurtherexperiments.OnlyonTorus

DEAmaterialthecompoundscouldbeseparatedwithacceptable

resolutionandpeakshape,onothersincludingallViridiscolumns

thecompoundselutedasbroadandoverlappingsignalsonly(see

supportinginformation)

Concerningthemobilephase itwasrequiredtoadd organic

solventsanddiethylamineasmodifiers.ThepolarityofpureCO2

is similar to hexane [30], and therefore a small percentage of

methanol wasrequired;the combination withacetonitrilewas

advantageousintermsofresolution(Fig.2B),thusaMeOH/ACN

mixtureintheratioof9:1wasemployed.However,withoutan

alkalineeluentnoacceptableresultwaspossible.Thisobservation

wasin agreementtoliterature,whereanenhancedSFC

separa-tionofbasicsubstanceswithanalkalinemobilephaseisreported

[31].Theauthorsattributedthiseffecttoreducedsecondaryionic

interactionswithresidualsilanols.Forthecurrentapplicationthe

additionof0.8%diethylamine(DEA)tothemodifier(i.e.the

afore-mentionedmixtureofMeOHandACN)showedtobetheoptimum

Intermsofelutionmodeconditionshadtobefine-tunedaswell Evenwithaveryflatgradientthefirstfoursignalsmerged,sothat isocraticconditionshadtobeselected;97.7%phaseA(CO2)and 2.3%B(MeOH,ACNandDEA)providedthebestresolution.Itis note-worthytosaythatalreadyaslightchange(e.g.to2.5%B;Fig.2C) hadanegativeimpactontheseparation Loweringthemodifier concentrationto2.0%resultedinprolongedretentiontimes,yet compounds2and3graduallyoverlapped

Anotherparameterwithsignificantinfluence onthe separa-tionofthesixalkaloidswascolumntemperature(Fig.2D).Rather surprisingly,byloweringcolumntemperaturedownto15◦C reten-tion times steadily increased.The opposite would beexpected becauseatlowertemperaturesfluiddensityincreases,resultingin reducedretention.Apossibleexplanationfortheobservedeffects mightbechangesinthepolarityofthestationaryphaseduetoa temperature-dependentadsorptionofmobilephasecomponents [32].Itisobviousthatcarbondioxidewasnotpresentinthe super-critical stateanymore,becauseitscritical temperatureis 31◦C; however,workinginthesubcriticalstagehasnosignificant dis-advantages and it is described (butnot necessarily mentioned) quiteoften[33].Furtherchromatogramsindicatingtherelevance

ofindividualmethodparametersarecompiledassupplementary material.Aninterestingfactshownthereistheinfluenceofapplied backpressure(ABPR).Thissettingisusuallyofminorimportance, yetinthecurrentapplicationitmodifiedresolution,particularly betweencompounds2and3.Thelattercouldberesolvedbestat

anappliedABPRof150bar

3.2 Methodvalidation Assaydevelopmentwasfollowedbymethodvalidation;data presentedinTable1confirmsthatallrequirementswere satisfac-torilymetinthisrespect.Selectivitywasdeducedbyseveralfacts First,structurallycloselyrelatedcompounds(including diastere-omers)couldberesolved,second,nosignsofco-elutions(e.g.peak shoulders)werevisible,andthird,thePDAdatawasvery consis-tentwithinindividualpeaks.Afinalconfirmationofpeakpurity

by SFC-MSwasnotpossible,because thistechnical option was notavailable.Forallstandardscalibrationcurveswerelinearfrom approx 1000–30␮g/ml, withdetermination coefficients always beinghigherthan0.999.LODvaluesshowedtobeintherangefrom 0.6(5)to2.4(2)␮g/ml,LOQvaluesvariedfrom1.9–7.3␮g/ml.They naturallycannotcompetewiththoseachievablebyfluorescence detection(e.g.LODforquinineis2fmol,[6]);however,theyare comparabletoconventionalHPLC-UVasLOQvaluesof5␮g/gare statedinreference[17].Precisionwasinvestigatedbyrepeatedly assayingsampleCC-2017-2underoptimizedextractionand

Trang 4

sepa-Fig 2. Separation of Cinchona alkaloids by SFC; optimum conditions(A;column: Acquity UPC 2 Torus DEA 1.7 ␮m, 3.0 × 100 mm; mobile phase: CO 2 (A) and 0.8% diethylamine

rationconditions.Intra-day(≤2.2%)aswellasinter-dayvariations

(≤3.0%)wereacceptableandtypicalforinvestigatingplant

mate-rial,whichusuallyshowssomedegreeofinhomogeneity.Lastbut

notleast,accuracywasdeterminedinspikingexperiments(high

spike:200␮g/ml,mediumspike:100␮g/ml,lowspike:50␮g/ml)

Recoveryrateswerenotlowerthan97.2%(3,lowspike)andnot

higherthan103.7%(6,highspike),indicatingvalidityofthis

param-etertoo

3.3 Analysisofthesamples FoursamplesofdriedandmilledCinchonabark,allofthemwith Ph.Eu.quality,wereavailablefor quantification.Concerningthe optimumextractionprotocolaproceduredescribedbyGattietal wasadopted[6].Itutilizesalkalinemethanolandsonication,and showedtobeadvantageousoverotherslikesoxhletextractionin theirworkduetothemildconditionsapplied;theobserved

Trang 5

quan-A Murauer, M Ganzera / J Chromatogr A 1554 (2018) 117–122 121

Table 2

cinchonidine(6) 0.90 (0.91) 1.15 (1.47) 1.26 (1.14) 1.05 (0.89)

inFig.3.ThecompiledquantitativeresultspresentedinTable2

indicate that all of the investigated specimens were of similar

composition.Threeof thesix standardswereclearly assignable

by matching retention times and UV-spectra; if these criteria

werenotmet,e.g.peaksweretoosmallforprovidingmeaningful

spectra,respectivesignalswerenotconsideredforquantitation

Theassignedcompoundswerequinine,cinchonineand

cinchoni-dine, with the latter always being the least abundant alkaloid

(0.90%–1.26%).Mostdominantwascinchonine(1.87%–2.30%),

fol-lowedbyquinine,whichrangedfrom1.59%to1.89%;anexcellent

repeatabilitywasobservedwhile performingtheseexperiments

(␴rel≤1.55, n=3).The total alkaloid content variedfrom 4.75%

(sampleCC-2017-3)to5.20%(sampleCC-2017-2)

4 Conclusion

Thisstudyisanotherprooffortheexcellentseparationefficiency

andversatilityofSFC,especiallyinthefieldofnaturalproducts.The

determinationofalkaloidsinCinchonabarkisachallengingtask,

becausethetargetanalytesarestructurallyverysimilarandthe

investigatedmatrixiscomplexlikemostbiologicalsamples.Due

tothepersistingpracticalrelevance ofthedrugmany attempts

havebeenmadetodeterminethesecompounds,mostlybyusing

conventionalRP-HPLCincombinationwithfluorescencedetection

Thisassuredanexcellentsensitivity;however,therequired

anal-ysistimewasintherangefrom15[16]to50min[6],whenonly

recentpublicationsareconsidered.Thatacomparableseparation

isalsofeasibleinlessthan7minbyusinga“greentechnology”has beenshowninthecurrentstudy.Thiswasonlypossibleafter metic-ulousmethodoptimization,butoncecompleted,areproducible, accurateandruggedsystemwasavailableforroutineuse;method validationconfirmedthisestimation.Inthesamplesanalyzedthree outofsixstandardscouldbeassigned.Thisislessthaninprevious reports,butexplainablebythedifferentdetectiontechniquesused However,ifsuitableinstrumentationispresent(e.g.fluorescence detectorsforSFCareavailable)therewillbeprobablyno differ-enceinthenumberofidentifiedcompounds.Withtheavailable instrumentationquinine,cinchonineandcinchonidinecould eas-ilybeassignedincrudeCinchonabarkextracts.Thequantitative resultswerewellcomparabletopublisheddata,whichfor exam-plereportthefollowingvaluesforadrugwithPh.EU.quality:1.80% quinine,1.65%cinchonine,and1.25%cinchonidine[17].This suc-cessfulapplicationofSFC,onfortheutilizedtechnique“untypical” compounds,shouldraisefurtherinteresttofullyexplorethe poten-tialofthisseparationtechnique,whichdefinitelyisnotlimitedto the“classics”likecarotenoids,fattyacidsorterpenes.Thisandother studiesonnaturalproductslikeanthraquinones[34],kavalactones [35]orfurocoumarins[36]aregoodindicatorsactually

Conflict of interest

Theauthorsdeclarenoconflictofinterest

Acknowledgement

TheauthorswouldliketothanktheAustrianScienceFund(FWF, projectP269170)forfinancialsupport

Appendix A Supplementary data

Supplementarydataassociatedwiththisarticlecanbefound,

intheonlineversion,athttps://doi.org/10.1016/j.chroma.2018.04

038

References

[1] J Achan, A.O Talisuna, A Erhart, A Yeka, J.K Tibenderana, F.N Baliraine, P.J Rosenthal, U D’Alessandro, Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria, Malar J 10 (2011) 144.

Trang 6

[2] N.G Sanders, D.J Meyers, D.J Sullivan, Antimalarial efficacy of

hydroxyethylapoquinine (SN-119) and its derivatives, Antimicrob Agents

Chemother 58 (2014) 820–827.

[3] M Horie, M Oishi, F Ishikawa, T Shindo, A Yasui, O Shuzo, K Ito, Liquid

chromatographic analysis of Cinchona alkaloids in beverages, J AOAC Int 89

(2006) 1042–1047.

[4] E.M.O Yeboah, S.O Yeboah, G.S Singh, Recent applications of Cinchona

alkaloids and their derivatives as catalysts in metal-free asymmetric

synthesis, Tetrahedron 67 (2011) 1725–1762.

[5] G Lajko, T Orosz, N Grecso, B Fekete, M Palko, F Fulop, W Lindner, P Antal,

I Ilisz, High-performance liquid chromatographic enantioseparation of cyclic

ß-aminohydroxamic acids on zwitterionic chiral stationary phases based on

Cinchona alkaloids, Anal Chim Acta 921 (2016) 84–94.

[6] R Gatti, M.G Gioia, V Cavrini, Determination of Cinchona alkaloids and

vitamin B6 by high-performance liquid chromatography with fluorescence

detection, Anal Chim Acta 512 (2004) 85–91.

[7] T Mroczek, K Glowniak, TLC and HPTLC assay for quinoline and quinuclidine

alkaloids in Cinchonae cortex and pharmaceutical preparations, J Planar

Chromatogr 13 (2000) 457–462.

[8] H Klein, T Teichmann, Determination of Cinchona alkaloids in

pharmaceutical preparations by isotachophoresis (iontophoresis), Pharm Ztg.

132 (1987) 1131–1135.

[9] W Zhao, Y Li, Y Zhang, Y Hongfen, H Yu, A Chen, Determination of Cinchona

alkaloids by capillary electrophoresis with novel complex formation, Anal.

Lett 49 (2016) 1176–1183.

[10] W Buchberger, D Gstöttenmayr, M Himmelsbach, Determination of

Cinchona alkaloids by non-aqueous CE with MS detection, Electrophoresis 31

(2010) 1208–1213.

[11] M Romon, K Chruszcz-Lipska, M Baranska, Vibrational analysis of Cinchona

alkaloids in the solid state and aqueous solutions, J Raman Spectrosc 46

(2015) 1041–1052.

[12] A Yilmaz, N.T Nyberg, J.W Jaroszewski, Extraction of alkaloids for

NMR-based profiling: exploratory analysis of an archaic Cinchona bark collection,

Planta Med 78 (2012) 1885–1890.

[13] A.S Fabiano-Tixier, A Elomri, A Blanckaert, E Seguin, E Petitcolas, F Chemat,

Rapid and green analytical method for the determination of quinoline

alkaloids from Cinchona succirubra based on microwave-integrated extraction

and leaching (MIEL) prior to high performance liquid chromatography, Int J.

Mol Sci 12 (2011) 7846–7860.

[14] D.V McCalley, Analysis of Cinchona alkaloids by high-performance liquid

chromatography and other techniques, J Chromatogr A 967 (2002) 1–19.

[15] D.V McCalley, Quantitative analysis of alkaloids from Cinchona bark by

high-performance chromatography, Analyst 115 (1990) 1355–1358.

[16] C.V Hoffmann, M Lämmerhofer, W Lindner, Separation of Cinchona alkaloids

on a novel strong cation-exchange-type chiral stationary phase – comparison

with commercially available strong cation exchanger and reversed-phase

packing materials, Anal Bioanal Chem 393 (2009) 1257–1265.

[17] E Holmfred, C Cornett, C Maldonado, N Ronsted, S.H Hansen, An optimized

method for routine separation and quantification of major alkaloids in cortex

Cinchona by HPLC coupled with UV and fluorescence detection, Phytochem.

Anal 28 (2017) 374–380.

[18] M Ashraf-Khorassani, G Isaac, P Rainville, K Fountain, L.T Taylor, Study of

ultrahigh performance supercritical fluid chromatography to measure free

fatty acids without fatty acid ester preparation, J Chromatogr B 997 (2015)

45–55.

[19] E Lesellier, A Latos, A.L de Oliveira, Ultra high efficiency/low pressure supercritical fluid chromatography with superficially porous particles for triglyceride separation, J Chromatogr A 1327 (2014) 141–148.

[20] D Giuffrida, P Donato, P Dugo, L Mondello, Recent analytical techniques advances in the carotenoids and their derivatives determination in various matrixes, J Agric Food Chem 66 (2018) 3302–3307.

[21] Y Huang, T Zhang, Y Zhao, H Zhou, G Tang, M Fillet, J Crommen, Z Jiang, Simultaneous analysis of nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry, J Pharm Biomed Anal 144 (2017) 213–219.

[22] J Yang, L Zhu, Y Zhao, Y Xu, Q Sun, S Liu, C Liu, B Ma, Separation of furostanol saponins by supercritical fluid chromatography, J Pharm Biomed Anal 145 (2017) 71–78.

[23] W Yang, Y Zhang, H Pan, C Yao, J Hou, S Yao, L Cai, R Feng, Supercritical fluid chromatography for separation and preparation of tautomeric 7-epimeric spiro oxindole alkaloids from Uncaria macrophylla, J Pharm Biomed Anal 134 (2017) 352–360.

[24] Q Fu, Z Li, C Sun, H Xin, Y Ke, Y Jin, X Liang, Rapid and simultaneous analysis of sesquiterpene pyridine alkaloids from Tripterygium wilfordii Hook.

f using supercritical fluid chromatography-diode array detector-tandem mass spectrometry, J Supercrit Fluids 104 (2015) 85–93.

[25] A Hartmann, M Ganzera, Supercritical fluid chromatography – theoretical background and applications on natural products, Planta Med 81 (2015) 1570–1581.

[26] http://www.ich.org/products/guidelines.html , (Accessed 6 March 2018) [27] C West, E Lemasson, S Bertin, P Henning, E Lesellier, An improved classification of stationary phases for ultra-high performance supercritical fluid chromatography, J Chromatogr A 1440 (2016) 212–228.

[28] http://www.waters.com/waters/en US/SFC-Columns , (Accessed 6 March 2018).

[29] D.C Warhurst, J.C Craig, I.S Adagu, D.J Meyer, S.Y Lee, The relationship of physico-chemical properties and structure to the differential antiplasmodial activity of Cinchona alkaloids, Malaria J 2 (2003) 26.

[30] T Bamba, Application of supercritical fluid chromatography to the analysis of hydrophobic metabolites, J Sep Sci 31 (2008) 1274–1278.

[31] A Grand-Guillaume Perrenoud, J Boccard, J.L Veuthey, D Guillarme, Analysis

of basic compounds by supercritical fluid chromatography: attempts to improve peak shape and maintain mass spectrometry compatibility, J Chromatogr A 1262 (2012) 205–213.

[32] E Lesellier, C West, The many faces of packed column supercritical fluid chromatography – a critical review, J Chromatogr A 1382 (2015) 2–46.

[33] E Lesellier, Retention mechanisms in super/subcritical fluid chromatography

on packed columns, J Chromatogr A 1216 (2009) 1881–1890.

[34] D Aichner, M Ganzera, Analysis of anthraquinones in rhubarb (Rheum palmatum and Rheum officinale) by supercritical fluid chromatography, Talanta 144 (2015) 1239–1244.

[35] A Murauer, M Ganzera, Quantitative determination of lactones in Piper methysticum (Kava-Kava) by supercritical fluid chromatography, Planta Med.

83 (2017) 1053–1157.

[36] C Desmortreux, M Rothaupt, C West, E Lesellier, Improved separation of furocoumarins in essential oils by supercritical fluid chromatography, J Chromatogr A 1216 (2009) 7088–7095.

Ngày đăng: 31/12/2022, 09:49

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm