We investigated and compared the robustness of supercritical fluid chromatography (SFC) separations of the peptide gramicidin, using either isocratic or gradient elution. This was done using design of experiments in a design space of co-solvent fraction, water mass fraction in co-solvent, pressure, and temperature.
Trang 1jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a
Martin Enmarka,b, Emelie Glennea, Marek Le´skoa,c, Annika Langborg Weinmannd,
Tomas Leeke, Krzysztof Kaczmarskic, Magnus Klarqvistd, Jörgen Samuelssona,∗,
Torgny Fornstedta,∗
a Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden
b Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-75123 Uppsala, Sweden
c Department of Chemical and Process Engineering, Rzeszów University of Technology, PL-359 59 Rzeszów, Poland
d Early Product Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
e Medicinal Chemistry, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
Article history:
Received 27 April 2018
Received in revised form 1 July 2018
Accepted 5 July 2018
Available online 10 July 2018
Keywords:
SFC
Peptide
Gramicidin
Robustness
Method transfer
Water
Weinvestigatedandcomparedtherobustnessofsupercriticalfluidchromatography(SFC)separations
ofthepeptide gramicidin,usingeitherisocraticorgradientelution.Thiswas doneusingdesignof experimentsinadesignspaceofco-solventfraction,watermassfractioninco-solvent,pressure,and temperature.Thedensityoftheeluent(CO2-MeOH-H2O)wasexperimentallydeterminedusinga Corio-lismassflowmetertocalculatethevolumetricflowraterequiredbythedesign.Forbothretentionmodels, themostimportantfactorwasthetotalco-solventfractionandwatermassfractioninco-solvent Com-paringtheelutionmodes,wefoundthatgradientelutionwasmorethanthreetimesmorerobustthan isocraticelution.Wealsoobservedarelationshipbetweenthesensitivitytochangesandthegradient steepnessandusedthistodrawgeneralconclusionsbeyondthestudiedexperimentalsystem
Totesttherobustnessinapracticalcontext,boththeisocraticandgradientseparationsweretransferred
toanotherlaboratory.Thegradientelutionwashighlyreproduciblebetweenlaboratories,whereasthe isocraticsystemwasnot.Usingmeasurementsoftheactualoperationalconditions(notthesetsystem conditions),theisocraticdeviationwasquantitativelyexplainedusingtheretentionmodel.Thefindings indicatethebenefitsofusinggradientelutioninSFCaswellastheimportanceofmeasuringtheactual operationalconditionstobeabletoexplainobserveddifferencesbetweenlaboratorieswhenconducting methodtransfer
©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense
(http://creativecommons.org/licenses/by/4.0/)
1 Introduction
The separation of therapeutic peptides has long been an
important application area for chromatography, particularly
reversed-phaseliquidchromatography(RPLC)[1 Withgrowing
interest in supercritical fluid chromatography (SFC) for
analyz-ingandpurifyingsmallmolecules(i.e.molecularweights<1kD)
[2,3 severalauthorsfrombothacademiaandindustryhavealso
startedtoinvestigatehowSFCcouldbeusedtoanalyzeandpurify
peptides[4–13] Whilethequality-by-design(QbD)paradigmis
firmlyestablishedinliquidchromatography[14],itisnotsimilarly
∗ Corresponding authors.
E-mail addresses: Jorgen.Samuelsson@kau.se (J Samuelsson),
Torgny.Fornstedt@kau.se (T Fornstedt).
establishedinSFC,probablybecauseSFCislessrobustthanliquid chromatography[3 Somestudieshaveinvestigatedthe robust-nessofSFCseparationmethodsinthecontextofmethodtransfer andbyinvestigatingtherobustnessinadesignspace[15] Thesmallbut growingbody ofstudiestreating theSFC sep-aration of peptides [4–13] has investigated a limited number
of peptides, for example, gramicidin D [6,12,13], leucine-enkephalin[4–6,10],methionine-enkephalin[4–6,10],angiotensin
I [4 angiotensin II [4–6], cyclosporin analogs [7 beta-methylphenylalanine [11], oxytocin [10], bradykinin [4,10], Pro-Leu-Glyamide[4 sauvagine[4 leupeptide[4 urotensinII [4 sulfomycin[8 cyclicpeptides[16],andcustomacidicandbasic linearuncappedpeptides[9
Most studies have used traditional liquid chromatographic stationary phases suchas silica [7,7,9 diol [8,9 C18 [4,9 2-ethylpyridine[4,5,9 cyano [6 and various chiral phases [11], https://doi.org/10.1016/j.chroma.2018.07.029
0021-9673/© 2018 The Authors Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).
Trang 2Table 1
Properties of the gramicidin isoforms partially separated in the study.
formyl-X-Gly-Ala-Leu-
Ala-Val-Val-Trp-Leu-Y-
Leu-Trp-Leu-Trp-ethanolamine
* Specified by vendor.
** Not specified by vendor.
as well as polymer-based phases such as divinylbenzene [10]
or poly(styrene–divinylbenzene) [12,13] Eluents are typically
CO2 modified with acetonitrile/water [5,8 acetonitrile [4,11],
methanol[4,6–9,11],ethanol[7,11],andisopropylalcohol[7,11]
towhichacidicorbasicadditivessuchastrifluoroaceticacid(TFA)
[4,5,9 2,2,2-trifluoroethanol(TFE)[6 ammoniumacetate[4,6
aceticacid[6 andisopropylamine[6,8]areadded.Severalstudies
haveinvestigatedthemodificationofco-solventswithwater,and
founditsadditionnecessarytoachieveresolutionortoimprove
peakshape[4,6,9 Moststudieshaveusedgradientelution,but
somehavealsoinvestigatedtheisocraticelutionmode[11]
Duetothesmallchemicalspaceinvestigated,itisdifficultto
drawgeneralconclusionsastothefeasibilityofusingSFCfor
pep-tideanalysisandpurification.However,severalofthementioned
studiesdid investigatethe effects of thestationary phase,
elu-ent,andotheroperationalconditions,suchasbackpressureand
temperature[7 Clearly,amechanisticunderstandingofpeptide
separationinSFCislackingcomparedwithourunderstandingof
themuchmorematureRPLCtechnique[17–19]
Robustness is “a measure of [an analytical procedure’s]
capacitytoremainunaffectedbysmall,butdeliberatevariationsin
methodparametersandprovidesanindicationofitsreliability
dur-ingnormalusage”[20].Itiswellknownthatdeliberatevariations
inoperatingconditionsinSFCcangreatlyaffectseparation[21,22]
whichisanadvantageofSFCascomparedtoLCforimproving
selec-tivity;however,thisalsoaffecttherobustness.However,itisless
knownandunderstoodthatunintentionalvariationscanalsohave
amajorimpact,forexample,whenoperatingSFCinhighly
com-pressibleregionsorwhengeneralretentionmechanismsarepoorly
understood.Studyingtherobustnessofseparationsconductedin
thehighco-solventregimeofSFC,technicallyinsubcritical
condi-tions[23]cangivevaluableinsightintoareastypicallynotstudied
inSFCwhere theeluent ismoreLClikebecausethefluid
com-pressibilitydecreaseswithincreasingco-solventintheeluent.Most
studiesindicatethatworkingwithalargefractionofco-solventis
necessarytoelutepeptides
Beyazetal [24] systematically studiedtheeffects of
differ-ent instrumental and operating conditions on the precision of
retentiontimesforalargesetofsoluteselutedonC18using
ace-tonitrile/buffer/water.Theyconcluded,forexample,thatisocratic
elutionwasmoresensitivethanwasgradientelutionwhen
study-ingtheeffectsofvariationinthemobilephasecomposition.No
similarinvestigationhasbeendoneforSFC
Theaimofthisstudyistoinvestigateandcomparethe
robust-nessofpeptideseparationsconductedunderisocraticandgradient
conditions in SFC As a model compound, we studied the
lin-earunchargedpentapeptidegramicidinseparatedonapH-stable
hybridsilicacolumnusinganeluentcontainingCO2,water,and
methanol.Therobustnesswasinvestigatedbyevaluatingthe
vari-ationin theretentionfactor usingdesign ofexperiments (DoE)
by perturbing the most important operational conditions, i.e
varyingthetotal orinitialgradientfractionofco-solvent,water massfractioninco-solvent,pressure,andtemperature.Secondly, simulationsbasedontheexperimentaldata,butwithdifferent sen-sitivitiestotheperturbations,wereperformedinordertoreveal howtherobustnesswouldvaryforhypotheticalsolutesin gradi-entseparationsofdifferentgradientslopes.Finally,thepractical consequencesoftheobserveddifferencesinrobustnessbetween gradientandisocraticseparationswerequantifiedbytransferring theisocraticandgradientmethodstoadifferentlaboratory
2 Material and methods
2.1 Chemicals The mobile phase consisted of CO2 (99.99%) from AGA Gas
AB(Lidingö,Sweden),HPLC-grademethanolfromVWR(Radnor,
PA, USA), and water with conductivity of 18.2Mcm from a Milli-QPlus185waterpurificationsystemfromMerckMillipore (Darmstadt,Germany).Gramicidin(CAS#1405-97-6)fromBacillus aneurinolyticuswasobtainedfromSigma-Aldrich(St.Louis,MO, USA).Thislinearpeptidehasthesequenceformyl-
X-Gly-Ala-Leu-Ala-Val-Val-Trp-Leu-Y-Leu-Trp-Leu-Trp-ethanolamine, where X
canbeeitherValorIleandYeitherTrp(GramicidinA),Phe (Gram-icidinB),orTyr(GramicidinC)[25],andisthereforereferredto
ascomprisingtheX–Yisoformsofgramicidin(Table1).All Gram-icidinsamplesweredissolvedinneatMeOHtoaconcentrationof
1mgmL–1 2.2 Instrumentation
Inthisstudy,twodifferentanalyticalSFCsystems,ofthesame modelandmanufacturerwereused,butattwodifferentlocations: KarlstadUniversity(denotedLaboratory1)andatAstraZenecain Gothenburg(Laboratory2).TheLaboratory1systemwasaWaters UPC2(WatersCorporation,Milford,MA,USA)equippedwithaPDA detector.TheLaboratory 2systemwasalso aWaters UPC2 but connectedviaapassivesplitter(UPC2MSsplitter)toaPDA detec-toranda Waterssingle-quadrupolemassspectrometer(Waters SQD2)usingelectrosprayionizationinpositivemode.Bothselected ionmonitoringandscan mode(800–1000m/z;833Das−1)were used,respectively.InLaboratory1theUPC2instrumenthada sin-glestackconfigurationfrombottomtotopofpump,autosampler, convergencemanager(backpressureregulator),columnmanager andPDAdetector.InLaboratory2,theUPC2inLaboratory2had
atwo-stackconfigurationwithpump,autosampler,convergence managerinthefirststackandmake-uppump,columnmanager andPDAdetectorinthesecondstack.Theinnerdiameterofthe stainlesssteeland PEEKtubingfrominjectortocolumntoPDA
toconvergencemanagerwas0.18mmatbothlaboratoriesexcept fromthesplittertoconvergencemanageratLaboratory2werethe innerdiameterwas0.25mm.ThePDAflowcellvolumewas8.4L
atbothlaboratories
Themobilephaseflowtothemassspectrometerwassplitwith
apassivesplitteranddilutedwitha0.2mLmin–1mixtureof95/5% (v/v)methanol/10mMammoniumformate.Theextracolumn vol-umewas measuredfrom the retention time of an injectionof
1mgmL–1gramicidinwithazero-dead-volumeunioninplaceof thecolumninbothsystems.Thedifferencewascompensatedfor
incomparisonsbetweenthetwosystems.Pressurewasmeasured usingtwomodelEJX530Aabsolutepressuretransmitters (Yoko-gawaElectricCorporation,Tokyo,Japan)connectedtothecolumn inletandoutletusingatee.AdataloggerfromPicoTechnology(St Neots,UK)wasusedtorecordthepressure
Thetotal andco-solventmassflows weremeasureddirectly afterthemobilephasemixerandbetweentheco-solventpump
Trang 3low-flowCoriolismassflowmeter(BronkhorstHigh-TechB.V.,Ruurlo,
Netherlands),hereafterdenoted“CFM.”Thecolumnsusedwerea
2.5-mKromasil SFC-2.5-XT(100×3.0mm)(AkzoNobel,Bohus,
Sweden) and a 1.7-m Waters 2-picolylamine (100×3.0mm)
(WatersCorporation)
2.3 Procedure
2.3.1 Designofexperiments
A three-level, four-factor, central composite face-centered
experimentaldesignwiththreecenterpointswasusedto
inves-tigatehow the logarithmic valueof the retention factor ofthe
Val-Aisoformofgramicidinvarieswithtotalco-solventfraction
(MeOH+water),watermassfractioninco-solvent,pressure,and
temperaturefortheisocraticandgradientelutions,respectively
OnlytheKromasil SFC-2.5-XTcolumnwasinvestigated.Thelog
transform of the retention factor wasused because the
reten-tion generally hasa logarithmic relationship with the fraction
ofco-solventusedintheseparation[26].Thecentralcomposite
face-centeredexperimentaldesignmodelwasselectedinorderto
achievegood predictivepowerinthedesign space[27]as well
astoinvestigatepotentialquadratictermsandinteractionterms
betweenfactors.Intheisocraticelutionexperiments,thetotal
co-solventfractionwasidenticaltotheisocraticcomposition,andin
thegradientelutionexperiments,thetotalco-solventfraction
indi-catedtheconditionatthestart(andend)ofthegradient.Theset
designwasasfollows:thetotalco-solventfractionduringthe
iso-craticexperiments was30, 33,and 35 v/v%and theco-solvent
gradientwas28.3–61.3,30.0–65.0, and31.7–68.7 v/v%in5min
whentheretentiontimeswerefoundtobereasonable.Aftereach
changeofeluentcomposition,thesystemwasequilibratedforat
leastonehour.Thewatermassfractioninco-solventwas1.2,5,
and8.7w/w%.Theset,backpressurewas110,130,and150bar
Thetemperaturewas30,45,and60◦C.Duetothenatureofmixing
abinaryco-solvent[28,29]withCO2,thesetvolumetricfraction
ofco-solventwasnotusedbutratherthemeasuredmassfraction
[30].The design wasrescaled for theactualandmeasured
val-uesoftheco-solventfraction,watercontent,andpressure.2L
injectionsof1mgmL–1 gramicidininneatMeOHweremadeat
leastinduplicateforeachexperimentalcondition.Chromatograms
wererecordedat220nm.Retentiontimeswereestimatedfrom
peakapexandnormalizedtoretentionvolumesusingthe
mea-suredmassflowanddensity(seesection2.3.2).Thevoidtimewas
obtainedfromtheinitialbaselinedisturbanceandwasalso
normal-izedtovoidvolume.Theaverageofallvoidvolumeswasusedin
calculatingeachretentionfactor.Multiplelinearregressionsofthe
log10-transformedretentionfactorswereperformedusingMODDE
11(Umetrics,Umeå,Sweden)witha95%confidenceleveland
non-significantfactorsweremanuallyremoved
2.3.2 Characterizingtheexperimentalconditions
Asfactorsfortheexperimentaldesign,thetotalco-solventmass
fraction,watermassfractioninco-solvent,columntemperature,
andaveragecolumnpressurewereused.Theco-solventfractions
weremeasuredusingtheCFM.Thearithmeticmeanofthecolumn
inletandoutletpressuresforeachisocraticandgradientcondition
wasusedasthepressurefactor.Theinstrumentsettemperature
wasusedasinputtotheexperimentaldesign,asseveralof our
studieshaveindicatedthatourinstrumentsettemperatureisvery
accurate[22,30].ThemassfractionofwaterinMeOH,takenfrom
thegravimetricpreparationofco-solvents,wasusedasinputtothe
experimentaldesign
Tocalculatethevolumetricflowrate,thedensityoftheeluentis
required.However,toourknowledgeitisimpossibletoaccurately
calculatethedensityoftheternaryCO -MeOH-H Ofluidusedhere
Therefore,directdensitymeasurementusingtheCFMwas eval-uatedandperformed.Themainchallengewasthatthepressure andtemperatureinsidetheCoriolisflowcellmustbeidenticalto thoseinsidethecolumn.Thiswasachievedbyremovingthe col-umnandsettingtheback-pressureregulatorsothatthecolumn averagepressureswereachievedintheCFM.Thetemperaturewas adjustedbysimultaneouslyincreasingtheflowrateandtheset col-umnoventemperatureuntilthedesiredtemperatureintheCFM wasobtainedandstabilized.TubingfromtheUPC2totheCFMwas insulatedtominimizeheatloss
To plotcontourplots and calculate densities otherthan the experimentalmeasureddatapoints,seeSupplementaryDataTable S1; theexperimentaldatawerefitted toa second-order multi-polynomialequationwithinteractiontermsusingMODDE11 Theaccuracyofthesedensitymeasurementswasfirst evalu-atedbycomparingtheoreticalandmeasureddensitiesusingpure
CO2atthreesetbackpressures(110,130,and150bar)andthree temperatures(30,45,and60◦C)at3mLmin−1.Thetheoretical den-sitywascalculatedusingNISTReferenceFluidThermodynamicand TransportpropertiesDatabaseversion9.1(REFROP)[31]withthe measuredarithmeticmeanpressureandmeasuredtemperatureas inputs,seeSupplementaryDataTableS2
Allpressureanddensitymeasurementswereconducted sepa-ratelytominimizeextracolumnvolumes
2.3.3 Methodtransferexperiments Thesame2.5-mKromasilSFC-2.5-XTusedfortheDoEin Lab-oratory1wasinstalledinLaboratory2andthesamesetmethod conditionswereusedaswhenrunningtheexperimentaldesigns center-pointexperimentsintheisocraticandgradientelutions.The totalmassflow,co-solventmassflowandaveragecolumnpressure weredeterminedatbothsites
3 Results and discussion
TheretentionbehaviorinSFCofthemainisoformofgramicidin, Val-A,wasinvestigatedintheisocraticandgradientelutionmodes usingamixtureofMeOHandwaterasco-solventsatdifferent tem-peraturesandpressures.Thegoalwastouseaquantitativemodel
oftheretentionfactortocomparetherobustnessoftheseparation systemineitherelutionmodewithinthedefineddesign space Experimentaldatawerealsoextrapolatedtogivegeneralinsight intotherobustnessoftheisocraticand gradientelution separa-tionsystems.Tocalculatetheretentionvolumeintheexperimental space,theeluentdensitywasdeterminedusingtheCFM.Finally, theseparationsystemwastransferredtoadifferentlaboratoryto evaluatethepracticalimplicationsoftransferringamoreorless robustseparationsystem
3.1 Retentioncharacteristicsofgramicidin Thegoalofthescreeningwastofindasatisfactoryseparation systemandtofindsuitableboundariesfortheexperimentaldesign Initialscreeningofthechromatographicbehaviorofgramicidin anditsisoformswasdoneonhybridsilicaand2-picolylamine sta-tionaryphasesusingMeOH/waterastheco-solvent.Fig.1presents thechromatogramfroma2-Linjectionof1.0mgmL–1gramicidin separatedonthehybridsilica(Fig.1a)and2-picolylamine(Fig.1b) columns.Frommassspectrometricdata,theretentionorderonthe hybridsilicaphasewasfoundtobeIle-B,Val-B,Ile-C/Ile-A,and Val-C/Val-A(Fig.1c)andonthe2-picolylaminephasetobeIle-B/Val-B, Ile-C/Val-C,Ile-A,andVal-A(Fig.1d).The2-picolylamine station-aryphasemanagedtoresolveeacharomaticisoformbutnotthe aliphaticforms,exceptforIle-AandVal-A.Thehybridsilica sta-tionaryphase,ontheotherhand,managedtoresolvethealiphatic isoformsbutwaslessabletodifferentiatebetweenthearomatic
Trang 4Fig 1. Analytical injections of gramicidin (a, c) on the hybrid silica column (Kromasil SFC-2.5-XT) using 5.00-min gradient elution of 28–62 v/v% at 110 bar and 60 ◦ C and (b, d) on the 2-picolylamine column using 5.00-min gradient elution of 23–57 v/v% at 110 bar and 60◦C Top row shows 220-nm UV traces of 2-L injections of 1 mg mL –1
gramicidin Bottom row shows selective ion traces of all gramicidin isoforms for [M + 2 H] 2+ fragments.
forms.Theseresultsareasexpectedconsideringthenatureofthe
hybridsilicaandthe2-picolylamineligand.Furtherstability
exper-imentsusingthe2-picolylaminecolumnrevealedanon-reversible
retentiondriftwhenvaryingtheamountofwater,sothiscolumn
wasnotusedinfurtherstudies(datanotshown)
Addingwatertothemethanolco-solvent[32,33], wasfound
tosignificantlyaffecttheretentionandpeakshapeinthecaseof
gramicidin(Fig.2).Toinvestigatewhetheraddingwater tothe
eluentresultedinacontinuousordiscontinuouschangein
reten-tionand/orpeakshape,thefirstinjectionswereperformedwith
neatmethanolonnewcolumnsusingtheisocratic(Fig.2a,b)and
gradient(Fig.2c,d)elutionmodes.Followingtheneatmethanol
experiments,injectionsweredoneat1.2,5,and8.7w/w%water
addedtotheco-solvent.WhilethesolubilityofwaterinneatCO2in
supercriticalconditionsisgenerallybelowamolarfractionof0.01
[34],itissignificantlyhigherwhenthewaterisaddedtogetherwith
methanol[35].Byincreasingthewatercontentoftheeluent,the
apparenttailingofthemainpeakdecreasesinsemi-analytical
con-ditions(Fig.2a,c)andisconsiderablyreducedinsemi-overloaded
conditionsinboththeisocraticandgradientelutions(Fig.2b,d)
Toconclude,wefoundtheretentiononthehybridsilica
col-umntobereproducible andabletoseparatealiphaticforms of
gramicidin.Wealsofoundthatwaterreducedtheretentionfactor
and considerably reduced the peak tailing, especially in
semi-overloadedconditions.Addingwater totheeluentinthis range
didnotinduceanydiscontinuousorunexpectedbehaviorsinthe
retentionorpeakshape
3.2 Measurementofdensitytoestimatevolumetricflow
ToevaluatetheestimationofdensityusingtheCFM,the
den-sityofneat CO2 wasmeasuredovertherange of 30–60◦C and
134–175bar,inwhichtheCO2densityvariesfrom530to871kg
m−3(SupplementaryDataTableS2).Comparingthemeasuredand
calculated(REFPROP)densitiesshowedthattherelativedifference neverexceeded0.4%.ThisindicatesthatCFM shouldbeableto accuratelymeasuretheeluentdensity
BecauselittleisknownofthepropertiesoftheCO2-MeOH-H2O eluentsusedhere,thedensitywasmeasuredatallexperimental conditions(SupplementaryDataTableS1).Thesedatawerethen fitted toa second-order multi-polynomial equationwith inter-actionterms tointerpolatedensitiesin otherconditions.It was possibletofindanacceptablecorrelation(R2=0.79atthe95% con-fidencelevel)betweenthefactorsandthemeasureddensity Fig.3a–cplotsthedensityvariationasafunctionof tempera-tureandpressureforaco-solventfractionof31.5w/w%with1.3 (a),5 (b),and 8.7 (c) w/w% water intheco-solvent Ascanbe seen,thedensityvariesonlyslightlywithpressureand temper-ature,andaddingwatertotheeluentonlyslightlyincreasesthe densityofthemobilephase.Thismeansthat,fromadensity per-spective,thesystemisratherinsensitivetochangesintemperature, pressure,andthefractionofwateraddedtotheeluent.Littleis knownofthesysteminvestigatedhere,sowe cancomparethe resultsusingacalculatedCO2-MeOHmixturewithahighMeOH fractionintheeluent.ThedensityofaCO2-MeOHfluidatthe cen-terpoint(68.5/31.5w/w%co-solventfraction,5w/w%H2O,45◦C, and163.3bar)wasmeasuredtobe844±8kgm−3,whileitwas calculatedtobe843kgm−3usingREFPROP,indicatingthatwater haslittleeffectonthedensityoftheeluent
Fromthecorrelationof pressuretodensityatconstant tem-peratureand constant fractionsof co-solventandwater, it was alsopossibletodeterminehowdensityvariedinsidethecolumn duringaseparation.Fig.3 plotsthedensityvariationalongthe column assuminga linear pressuredrop at thecenter point in theexperimentaldesign.Thedensityalongthecolumnvariedby approximately1.5%fromcolumninlettocolumnoutlet(Fig.3d), meaningthatitisreasonabletousetheaveragedensityto deter-minetheaveragevolumetricflowrate
Trang 5Fig 2.Analytical (a, c) and semi-preparative (b, d) injections of gramicidin at 0, 1.2, 5.0, and 8.7 w/w% water in MeOH co-solvent: (a, b) isocratic elution conditions at the center point of the DOE experiments, 35 v/v% co-solvent, 130 bar BPR, and 45 ◦ C; (c, d) gradient elution conditions at the center point of the DOE experiments, 30–65 v/v% co-solvent in 5 min, 130 bar BPR, 45 ◦ C Injections were 2 L, 1 mg mL –1 (a, c); and 2 L 20 mg mL –1 (b, d).
Fig 3.Density variation in the experimental design space: isopycnic plots for 1.3, 5, and 8.7 w/w% water in MeOH at the isocratic center point of 31.5 w/w% over the studied pressure and temperature range (a–c) Plot (d) shows the density profile along the column as a function of a linear pressure drop in the isocratic center point.
Trang 6Table 2
Coefficients (scaled and centered) of design of experiments describing the retention factor of the Val-A isoform of gramicidin; numbers scaled by a factor of 10 2 , 95% confidence level C tot/init is the co-solvent fraction during isocratic elution or the initial fraction in gradient elution.
Log(k Val-A ) gradient b −6.69 ± 0.81 −3.75 ± 0.66 −2.00 ± 0.94 2.28 ± 0.66 1.45 ± 1.18 1.76 ± 0.692 −1.41 ± 1.00 75.9 ± 0.975
a Q 2 = 0.920, R 2 = 0.957.
b Q 2 = 0.942, R 2 = 0.973.
* Not significant.
Thedensitydropoverthecolumncouldbefurtherreducedby
operatingthesystematmuchlowerflowrates,asrecommended
earlier[36],butbothcolumnefficiencyandseparationtimewill
sufferforthisslightimprovement
Inthisinvestigation,theaveragevolumetricflowratevaried
between1.01 and 1.16mL min−1 over theentire experimental
design(SupplementaryDataTableS1),clearlyindicatingthe
impor-tanceof normalizing retention factorsbefore usingthem in an
experimentaldesign, as not doing sowould underestimatethe
retentiontimesbyupto16%andskewtheretentionmodel.Thishas
previouslybeensuggestedbyusandseveralotherauthors[29,37]
3.3 Robustnessofseparationsystem
Wechoseaface-centeredcentralcompositedesignforthe
pur-poseofquantitativelydescribingthevariationinretentionvolume
inordertoestimatetherobustnessoftheseparationsystem.All
lin-earfactorswerefoundtobesignificantaswellassomequadratic
andinteractionterms.TheircoefficientsarepresentedinTable2
Themodel determinedin theDoEdescribeshowtheelution
volumevarieswithchangesintotalco-solvent(w/w%),waterin
co-solvent(w/w%),pressure,andtemperaturewithinthe
exper-imentaldesign space.Usingthemodel,itispossibletoquantify
thesensitivityoftheseparationsystem,inthiscasetheretention
volumeofVal-A,toperturbationsintheco-solventfraction,water
massfractioninco-solvent,pressure,andtemperatureineitherthe
isocraticorgradientelutionmode.Themodelcoefficients(Table2)
indicatethattheisocraticseparationsystemis2.5,3.2,2.5,and1.4
timesmoresensitivetochangesinthetotalco-solventfraction,
watermassfractioninco-solvent,pressure,andtemperaturethan
inthegradientelutionsystem
Onewayofvisuallyrepresentingtherobustnessoftheisocratic
andgradientelutionsystemsispresentedinFig.4aforisocratic
conditionsandFig.4 forgradientconditions.Theplotrepresents
acontoursurfaceindicatingtherelativeerror,ER,oftheretention
factor,k,atanypositioninthedesignrelativetotheretentionfactor
atthecenterpoint,kref
ER=100· k−kref
kref
Theplotwasgeneratedtoinvestigatehowperturbationsinthe
twomostimportantfactors,totalco-solventfractionand water
massfractioninco-solvent,affecttheretention.Naturally,the
com-pleterobustnessoftheseparationsystemisrelatedtochangesin
anyfactorsinsideoroutsidetheexperimentaldesign.Startingat
theisocraticcenterpoint(Fig.4a,circle/cross),itisapparentthatif
thetotalco-solventfractioniskeptconstant,aperturbationofupto
approximately±5%inthewatermassfraction(observetherelative
changes,inthiscase4.75–5.25w/w%MeOH/H2O)intheco-solvent
wouldbeallowedifthemethodspecifiesthattheretentionfactor
canvaryby≤2%.Ifthetoleranceisincreasedto≤10%,a
pertur-bationofuptoapproximately–25/+30%inthewatermassfraction
wouldbepossible.Similarobservationscanbemadefor
pertur-bationsof total co-solventfractionwithaconstant water mass
fraction.Thesystemisleastrobustwhenbothtotalco-solvent
frac-tionandwatermassfractionaresimultaneouslyperturbedinthe
samedirection,becausebothfactorsaffecttheretentionvolumein thesamedirection.Fromthediagonalshapeofthecontoursurface,
itisalsoapparentthatifthefactorsaresimultaneouslyperturbed
inoppositedirections,itispossibletoperturbthesystem unknow-ingly,i.e.,maintaininganearconstantretentionfactorwhilehaving changedtheoperationalconditions.However,alargeperturbation
inthetotalco-solventfractionandwatermassfractionwouldalso alterthesystempressureandfurtherchangetheretentionfactor, makingtheinterpretationslightlymorecomplicated
Focusingonthegradientcenterpoint(Fig.4b,circle/cross),it
isapparentthatifthetotalco-solventfractioniskeptconstant,a perturbationofuptoapproximately±17%inthewatermass frac-tionwouldbeallowedifthemethodspecifiesthattheretention factorcanvary by≤2%.Ifthetoleranceis increasedto≤10%,a perturbationofuptoapproximately–80/+90%inthewatermass fractionwouldbepossible.Thecontoursurfacehasthesame char-acteristicsasinisocraticelution,meaningthataperturbationof bothfactorsinthesamedirectionoropposite directionswould maximizeorminimizetheresponseofthesystem,respectively Themostimportantconclusionisthatthegradientsystemisless sensitivetoco-solventorwaterperturbationsthanistheisocratic system
There are several possible origins of perturbations in the co-solventandwaterlevels,themostlikelytooccurand, simul-taneously,themosteasilymitigated isinaccuracy intheeluent preparation.BecauseMeOHisveryhygroscopic,anothersourceof perturbationistheaccumulationofwaterovertimedueto absorp-tionfromtheair.Changesintotalco-solventfractionaremuch moredifficulttoidentify,astheycouldresultfromdifferentpump performanceorpumpleakage,whichalsocouldbeaffectedby dif-ferentsystempressures.Thismatterisdiscussedfurtherinsection 3.5
3.4 Simulatedrobustnessofmodifiedseparationsystem The robustness of the studied separation system is a func-tionofthesensitivityoftheVal-Aisoformofgramicidintototal co-solventfraction, watermassfraction,pressure,and tempera-tureonthesilica-basedstationaryphase.Thisisdescribed,after removingallnon-significantterms,bythefollowingsecond-degree polynomial:
log10(k)=˛1P+˛2Ctot+˛3T+˛4CH 2 0+˛5T2+˛6PT
wherethecoefficients˛1to˛7andconstantˇarelistedinTable2
CH2O(w/w)isthewatermassfractionintheco-solvent,Ctot(w/w)
isthetotalfractionofco-solventintheeluent,T(◦C)isthe tempera-ture,andP(bar)isthepressure.Ifthepressureandtemperatureare keptconstantandwejustconsiderthewaterandtotalco-solvent, themodelcanbereducedto:
log10(k)=˛2Ctot+ (˛4+˛7T) CH 2 0+ (3) whereisaconstant.Usingthissimplifiedmodel,twoadditional separationsystemswereinvestigated:first,inwhichthe sensitiv-itytototalco-solventandwaterwasreducedtohalfthatofthe
Trang 7Fig 4.Robustness plots of the separation system described by variation in the retention factor of the Val-A isoform, showing the two most important factors describing the system, i.e., total co-solvent fraction and water mass fraction in co-solvent Plot (a) shows the variation in isocratic elution mode and (b) in gradient elution mode The crossed dots indicate the center reference points in the isocratic and gradient elution modes where the relative error is zero.
Fig 5. Simulated robustness plots of isocratic elution based on the experimental system Plot (b) is a robustness plot using the simplified regression model (Eq 3); plots (a) and (c) represent theoretical systems less and more sensitive to the co-solvent and water fraction, by a factor of 2.
initialmodeland,second,inwhichthesensitivitywastwicethat
oftheoriginalmodel.Thepressureandtemperatureweresetto
bethesameasatthecenterpoint,andthesecontributionstothe
retentionwerehandledbyadjusting.Therobustnessplotsfor
isocraticconditionsarepresentedinFig.5a–c.Itisobviousfrom
theplotsthatthesystembecomesmorerobustasthesensitivity decreases(goingfromFig.5ctoa).Thisisunsurprisingandleadsto theconclusionthat,forrobustseparations,oneshouldavoid iso-craticseparationsifthesystemisverysensitivetochangesineluent composition
Trang 8experimen-talsystemingradientelution,weevaluatedtheuseoflinearsolvent
strengththeory,[26,38]:
log10(k)=log10(k0)−S·Ctot (4)
wherek0istheretentionfactorusingneatCO2aseluent,Sisthe
sensitivitycoefficient,andCtot isthetotal co-solventfractionin
eluent.Thelinearsolventstrengththeory(LSS)wasdevelopedfor
liquidchromatography,buthaverecentlybeenreportedtodescribe
theretentionofsolutesinSFCforseparationsusinghighfractions
ofMeOHintheeluent[29,38]
Assumingthat Sis alinear functionofwater fractioninthe
eluent:
log10(k)=log10(k0)−(S0+S1·CH2O)·Ctot (5)
InclassicalSFCgradientexperiments,theco-solvent(mixture
ofwaterandMeOH)ismixedwiththeCO2.Thiswillresultinthat
boththeMeOHandwatercontentwillvarywithtimeinthe
elu-ent.Thisjustifiestoincludethewaterterminthegradientequation
ObservethatCH2Oisthewatermassfractionintheco-solventand
notthewaterfractionintheeluent.However,multiplyingCtotwith
CH2Owillgivethewaterfractionintheeluent.ParametersS0and
S1andlog10(k0)wereestimatedforeachisocraticsystem(i.e.,less
sensitive,normal,andmoresensitive)andaresummarizedin
Sup-plementaryDataTableS3.Assumingalineargradient,theretention
timecanbecalculatedasfollows:
tR= t0
G(Gkstart+1)+t0,
G=St0
tg
(6)
wherekstartistheretentionfactorforthestartingeluent
composi-tion,t0isthehold-uptime,tgisthegradienttime,Gisthegradient
steepnessfactor,andisthechangeintotalco-solventduring
thegradient
Ingradientelution,boththesensitivitytochangesinthe
co-solventaswellasthegradientslopeareimportant.Thesensitivity
washandledinthesamewayasintheisocraticcase:50%,100%,
and200%oftheinitialmodelsensitivity.Thegradientslopeswere
1%min−1, 7%min−1 (center point),and 13% min−1 changes in
co-solventfractioninthegradientrun.Thefirstshallowgradient
representsahigh-resolutionseparationandthelaststeepgradient
representsafasthigh-throughputscreeninggradient.Theresults
arepresentedinFig.6:(a)inthetoprow,1%min−1,(b)middle
row,7%min−1,and(c)bottomrow,13%min−1 gradientslopes
Fromthefigure,itisapparentthattherobustnessofthe
separa-tionincreaseswithgradientsteepness,goingfromtoptobottom
Theleftcolumn(I)ofplotsinFig.6representsaseparationthatis
lesssensitive,middlecolumn(II)normallysensitive,andright
col-umn(III)moresensitivetochangesintotalco-solventfraction.The
robustnessincreasesasthesensitivitytochangesintheco-solvent
decreases.Finally,wecanalsoobservethediagonalpattern(aI→bII
→cIII)illustratingthatthemoresensitivethesolute,thesteeperthe
gradientslopeneedstobeinordertomaintainsimilarrobustness
Whiletherehasbeenlimitedgeneralizable discussionofthe
retentioncharacteristicsofsolutesin SFC,therehasbeenmuch
moreinthecaseofRPLC.Foralkylsilicastationaryphasesusing
acetonitrile,methanol,ortetrahydrofuranwithwaterasthe
elu-ent,Shasbeenempiricallyestimatedat0.25√Mw,whereMw is
themolecularmassofthesolute.InthecaseoftheVal-Aisoform
ofgramicidinwithamolecularmassof1881g/mol,anSvalueof
approximately11 wouldbeexpectedinRPLC;instead,herewe
observe15.7(SupplementaryDataTableS3).Sincethelinear
sol-ventstrengththeoryhasmostlybeenappliedtoreversed-phase
chromatography,itsvalidityinSFChasnotbeenthoroughly
inves-tigated.Glenneetal.recentlyinvestigatedtheretentionofseveral small,unchargedsolutesonaKromasildiolcolumnasafunction
ofthefractionMeOHintheeluent[38].Theypointedoutthatboth thesoluteadsorptiontothestationaryphase aswellasthe co-solventadsorptionneedtobeconsideredtofullyunderstandthe retention[29,38].Furthermore,theydemonstratedthatatalow fractionof co-solventin theeluent,below themaximumofthe MeOHexcessadsorptionisotherm(13v/v%inthatstudy),theLSSis notvalid[29,38].However,atahigherco-solventfraction(asused
inthisstudy),theyfoundthattheLSSmodeldescribesthesolute retentionwell.ThisobservationbyGlenneetal.couldexplainwhy ourexperimentaldesignmodellackedanysignificantquadratic co-solventterms(seeEq.(2)).Thisalsoindicatesthatcautionshouldbe exercisedingeneralizingthetrendspresentedhere,ifthe separa-tionisconductedusingasmallfractionofco-solventintheeluent Onecouldalsonotethatthemaximumoftheco-solventexcess adsorptionisotherm,wheretheLSSmodelbecameacceptablein describingtheretentiontrends,dependsonthetypeofco-solvent (e.g.,MeOH,EtOH,orMeCN)andstationaryphaseusedinthe sepa-ration[39].Forwater,wedonothaveanyadsorptiondataandcan thereforeonlyspeculatethatthewateradsorptiontothe station-aryphaseisstrong.However,inthisexperimentaldesignwedid notobserveanysignificantquadraticwatertermsseeTable2and
Eq.(2);evenifthiscannotbeusedasevidencethereisnowater adsorptionundertheseconditions,thisindicatesthatwithinthis designspacetheeffectofaddingwatertotheeluentfollowsthe LSStheory
TheconclusionthatcanbedrawnfromtheS-valuesisthatour SFCsystemismoresensitivetovariationsintheco-solvent frac-tionthanthecorrespondingRPLCseparationwouldhavebeen.The theoreticalSvaluecouldrepresentahypotheticalsolutewitha molecularmassofapproximately1000gmol−1 intheless sen-sitivesystemandof approximately15,000gmol−1 inthemore sensitivesystem.Furtherstudieswithadiversesetofsolutes, sta-tionaryphases,andeluentswouldgivevaluableinsightintoboth thegeneralretentioncharacteristicsandrobustnessofSFC separa-tions.Ifsmallermoleculestendtobemoresensitivetothestrong eluentinSFCthaninRPLC,usinggradientelutioneven for sep-arationproblemsthatdonotrequiregradientelutiontoachieve reasonableseparationtimeorproductivitymightbebeneficialfrom
arobustnessperspective
Tosummarize,bothgradientandisocraticelutionbecomeless robustiftheseparationsystemunderinvestigationismore sensi-tivetoperturbationsintheparametersunderinvestigation.Using gradientelution,therobustnessincreaseswithincreasinggradient slope
3.5 Practicalimplicationsformethodtransfer
Toputtherobustnesstesting in apractical context,method transferwasconductedforbothanisocraticandagradient sep-arationof gramicidin.In this case,we usedthe centerpoint of theexperimentaldesign BothSFC systems werein their origi-nalfactoryconfigurations,exceptfortheadditionalMSdetector (andpassive flow splitter)on theSFC in Laboratory2 To con-trolthedifferentsystemconfigurations,gramicidininsolutionwas injectedwithoutacolumninbothsystems.Asmalldifferencein injector-detectorvolumewasdetermined,approximately70Lin Laboratory1and80LinLaboratory2.Thesameidenticalcolumn andidenticalinstrumentalsetconditions(e.g.,back-pressure, tem-perature,gradient,andprograms)wereusedinbothlaboratories TheisocraticchromatogramsfromLaboratories1and2are pre-sentedinFig.7c.Fromthechromatograms,wecanobservearather largedifferencebetweenthe separationsconducted at thetwo laboratories.Toinvestigatetheunderlyingreasonforthelonger retentioninLaboratory2thanLaboratory1,thepressureandmass
Trang 9Fig 6. Simulated robustness plots based on the experimental gradient system Top row represents separation conducted using a gradient slope of 1% min −1 , center row 7% min−1, and bottom row 13% min−1 The center column comprises robustness plots using the simplified regression model (Eqs 5 and 6) The left- and right-hand columns comprise robustness plots representing theoretical systems less and more sensitive to the co-solvent and water, respectively, by a factor of 2.
Fig 7. Method transfer from Karlstad University (Laboratory 1) to AstraZeneca Gothenburg (Laboratory 2) using the identical column and maintaining the set center-point conditions for the isocratic and gradient methods Contour plot shows the retention factor within the total co-solvent pressure dimension The cross and circle indicate the measured conditions in Laboratories 1 and 2, respectively.
flowsweremeasured.InLaboratory1,thepressureoverthe
col-umnwasmeasuredat162barandthetotalco-solventfractionwas
31.3w/w%,whileinLaboratory2thesamepointwasmeasuredat
159barand29.5w/w%co-solvent.Usingtheisocraticseparation
modelfromtheexperimentaldesign(see section3.3)resultsin
apredictedretentionfactorof6.7±0.7forLaboratory1(Fig.7a,
cross)and9.2±0.7forLaboratory2(Fig.7a,circle).Thismodel predictioncorrespondsverywellwiththeexperimentallyobserved retentionfactorsof7.3and9.3atLaboratories1and2,respectively Gradientseparationwasalsoconducted,andtheresulting chro-matogramsarepresentedinFig.7d.Thedifferencebetweenthe laboratorieswasverysmallinthiscase.Todeterminethe
Trang 10betweenthelaboratories:Theaveragepressureatthecenterpoint
inthegradientwasmeasuredtobe168barinLaboratory1and
164bar in Laboratory 2 (see Fig.7b).The correspondinginitial
gradientco-solvent(methanol)fractionswere26.6w/w%in
Lab-oratory 1 and 26.7w/w% in Laboratory 2, leading to predicted
(apparent)retentionfactorsof5.6±0.2inbothlaboratories.The
obtainedexperimentalvalueswere5.7and5.6inLaboratories1
and2,respectively
Theexperimentalresultsofthemethodtransfer supportthe
predictionsoftherobustnesscalculations,inwhichgradient
elu-tionispredictedtogiveamorerobustseparationsystemthandoes
isocraticelution.Althoughtheactualconditionsweremore
simi-larinthegradientcase,themainreasonforthemoresuccessful
methodtransferisbelievedtobetheimpactoftheGfactor(Eq.(6))
intheseparationsystem,withseparationsystemshavinghighG
factorslikelybeingmorerobusttodifferencesinsystempressure
andintheactualw/w%ofco-solvent
Theobserveddifferenceinco-solventfractionbetween
Labo-ratories1and2couldhaveseveralorigins,forexample,dueto
differentleakageratesoftheCO2pumpsand/orcheckvalves,
dif-ferentinstrumentconfigurations,orday-to-dayvariationsateither
laboratory[40–42] Theslightly lower pressure atLaboratory 2
couldsimplyhaveresultedfromreducingthetotalflowintothe
back-pressureregulatorbyteeingpartofitintotheMSdetector.It
isworthnotingthattherearenoinstrumentindicationsofthese
differences,astheywereonlyquantifiedusingCFMandpressure
transducersnotpartofthesystem.Thismeansthatfromapractical
perspective,atypicaluserwithoutaccesstopressuretransducers
ormassflowmeterscannotproperlydetectorcompensateforthese
systemdifferencesexceptinanempiricalmanner
It shouldbe noted that both systems in Laboratories 1 and
2wereoperatingwithintheirspecificationsanda
recommenda-tiontousersofmodernanalyticalSFC systemsshouldtherefore
betoalwaysmeasureflow,pressureandcompositionbyexternal
devises,forexamplebyusingthemethodologiesinthisstudy.The
resultscouldbeusedeitherto(I)characterizesystemsindetail(II)
tocalibrateseveraldifferentinstrumentstoperformthesame
per-formanceorto(III)detectifpreventivemaintenanceneedstobe
performed.Tomitigateeffectofdifferentsystemplumbing,stack
configurations,etc.theoperationalconditionscouldbematched
betweenthelaboratoriesaswehavepreviouslydonefor
prepara-tivescale-up[22].However,usinggradientelutionallowsformuch
morerobustoperation,reducingtheneedforcarefulqualification
dependingontherequirementsoftheanalysis
Themethodtransferresultsindicate that,given anidentical
effortinreplicatingtwoseparationsystems,therobustnessofthe
gradientelutionmethodwillleadtomoresuccessfultransferand
shouldbepreferredinseparatinggramicidinusingSFC
4 Conclusions
Therobustnessofpeptideseparationconductedunderisocratic
andgradientconditionsinSFCmodewasinvestigated.Asamodel
system,westudiedthelinearunchargedpentapeptidegramicidin
DseparatedonapH-stablehybridsilicacolumn(Kromasil
SFC-2.5-XT)usinganeluentcontainingCO2,water,andmethanol.The
systemwasfirstcharacterizedusingachemometricDoEapproach
Theexperimentalspacewasthennumericallyexpandedtogain
moregeneralinsight intothesystem.Finally,a gradientandan
isocraticseparationweretransferredtoanotherlaboratorytoput
therobustnesstestinginapracticalcontext
To conduct experimental design, the density of the eluent
(CO2-MeOH-H2O)wasexperimentallydetermined,asnoaccurate
equation-of-statemodelisavailableforthiseluentandweneeded
todeterminetheaveragevolumetricflowrateateachdesignpoint
Wefoundthat Coriolismassflowmeterscouldaccurately mea-surethedensity.Wealsoconcludedthatworkingwithahigh-mass fractionofmethanolandwaterasco-solventsresultedinsmall vari-ationsindensityover alargeareaofpressureandtemperature, inherentlymakingSFCmorerobust
FromtheDoE,wefoundthatthetotalfractionofco-solventin theeluentandthewaterfractionintheco-solventwerethemost importantfactorscontrollingtheretention.Themeasured sensitiv-itywashigherthantheRPLCvaluesforsimilarseparationsreported
intheliterature.Wealsofoundthatingradientelution,the sepa-rationisatleastthreetimesmorerobusttoperturbationsthanin isocraticelution
InspiredbytheDoEmodel,weinvestigatedsystemsthatare more and less sensitive tochanges in the eluent composite as wellasgradientelutionconductedatdifferentgradientslopes.We foundthatbothgradientandisocraticelutionsbecomelessrobust formoresensitivesystems.Usinggradientelution,therobustness increaseswithincreasinggradientslope
Finally,themethodsweretransferredtoanotherlaboratory.The resultsoftheisocraticmethoddifferedgreatlybetweenthe labora-tories,themainreasonsforthisbeingdifferencesinpressureand
inthetotalco-solventfractionbetweenthesystems.Thisdeviation couldbeexplainedusingtheDoEmodel.Forthegradient separa-tion,thetransferwassuccessful.Theresultsclearlyindicatethat gradientelutionresultedinaconsiderablymorerobustseparation system
Acknowledgements
Thisworkwassupportedby(i)theSwedishKnowledge Foun-dation for the KKS SYNERGY project 2016 “BIO-QC: Quality ControlandPurificationforNewBiologicalDrugs”(grantnumber 20170059),by(ii)theSwedishResearchCouncil(VR)fortheproject
“FundamentalStudiesonMolecularInteractionsaimedat Prepar-ativeSeparationsandBiospecificMeasurements”(grantnumber 2015–04627),by(iii)theÅForskFoundationfortheproject “Qual-itycontrolofnextgenerationbiologicalbasedmedicines”(grant number17/500)andby(iv)thegrant2015/18/M/ST8/00349from theNationalScienceCentre,Poland)
Appendix A Supplementary data
Supplementarymaterialrelatedtothisarticlecanbefound,in theonlineversion, atdoi:https://doi.org/10.1016/j.chroma.2018 07.029
References
[1] U Gottschalk, K Brorson, A.A Shukla, The need for innovation in biomanufacturing, Nat Biotechnol 30 (2012) 489–492, http://dx.doi.org/10 1038/nbt.2263
[2] E Lesellier, C West, The many faces of packed column supercritical fluid chromatography – a critical review, Ed Choice IX 1382 (2015) 2–46, http://dx doi.org/10.1016/j.chroma.2014.12.083
[3] G Guiochon, A Tarafder, Fundamental challenges and opportunities for preparative supercritical fluid chromatography, J Chromatogr A 1218 (2011) 1037–1114, http://dx.doi.org/10.1016/j.chroma.2010.12.047
[4] J Zheng, J.D Pinkston, P.H Zoutendam, L.T Taylor, Feasibility of Supercritical Fluid Chromatography/Mass Spectrometry of Polypeptides with Up to 40-Mers, Anal Chem 78 (2006) 1535–1545, http://dx.doi.org/10.1021/ ac052025s
[5] D Tognarelli, A Tsukamoto, J Caldwell, W Caldwell, Rapid peptide separation by supercritical fluid chromatography, Bioanalysis 2 (2010) 5–7,
http://dx.doi.org/10.4155/bio.09.165 [6] B Bola ˜ nos, M Greig, M Ventura, W Farrell, C.M Aurigemma, H Li, T.L Quenzer, K Tivel, J.M.R Bylund, P Tran, C Pham, D Phillipson, SFC/MS in drug discovery at Pfizer, La jolla, Int J Mass Spectrom 238 (2004) 85–97, http://dx doi.org/10.1016/j.ijms.2003.11.021