Ôn t p ch ng 4 - i s 10 c b n GV: Thái V n D ng
D NG 1 : GI I B T PH NG TRÌNH
1) 2x2 –5x + 2 < 0 ; 2) –5x2–4x + 12 < 0 ; 3) 16x2 +40x + 25 > 0 ; 4) –2x2 + 3x -7 > 0
5) 3x2 – 4x 0 ; 6) 15 2 1 1
x
x
; 7) x22x ; 8) 8 0 2
4x 20x25 0 9) 2
2x1 x x 30 10) 0 (3x – x2)(x2– 6x + 9) > 0 11) (5 – x)( 16x2– 8x + 1) < 0
12)
2
2
3 4 4
0 6
x x
x x
13)
2
2
2
0
2 5 2
x x
x x
14) 2
2
0
3 5 2
x
x x
15) 2
0 ( 5)(6 2 )
x
16)
2
8 15
0
2 5
x x x
17)
2
2
4 4
0
4 3
x x
x x
18) 23 7
0 2
x
x x
19)
2
2
2 0 9
x x x
H BPT)
2 2
6 0
20)
2
2
4 4
0
x x
21)
2
2
3 4 11
1 6
x x
x x
22)
5 13 1
x
23) 23 7
2 2
x
x x
2
2
6 9
0
x x
25)
2
2
2
0
2 5 2
x x
x x
26)
2
8 15
0
2 1
x x
x
2
2
3 10
0 9
x x x
2
2
2
0
4 5 6
x
x x
29) 4 1
2 4(2 )
x
x x
2
2
3 2
x x
x x
2
1
3 5 2
x
x x
32)
2
2
1
1 2
x x
x x
7 8 3(1 )
1
x x
x
0
3 9 2 1
D NG 2 : GI I BPT CH A N D I D U C N
0 B
A B
0 0
A
A B
;
2
0 0 0
A B
A B
B
A B
1) x2 x 12 2) 7 x 2
21 4 x x 3) x 3 2
1 x 2x 3x 5 0 4) 5x x 2 6 3 2x ; 5) x2 6) (x 6 x 2 x6)(x12) x 1
7) 2x2 x 3 x22x 8) 3 2 2
4 3 2 10 11
x x x x 10) x2 x 1 3 11)x 2
3x 2 3x 5x 12)2 2 2
4x 9x 5 2x x 1 13) x23x10 x 2 14) 2x2 x 3 1 x 15) x2 2 4 x23x 3 3x
ThuVienDeThi.com
Trang 2Ôn t p ch ng 4 - i s 10 c b n GV: Thái V n D ng
D NG 3 : GI I BPT CH A N TRONG GIÁ TR TUY T I
|A| B A B
A B
; |A| B A B
A B
; |A| | B|(A B A B )( ) 0 1) | x 3 | 2 x 3 2) | 4 x | 2 x 3 3) | 4 3 | x 2 x 3
4) | 5 x 3 | 6 x 3 5) | 4 2 | 2 x x 3 6) | 4 3 | | 2 x x 3 |
7) 2
2x | 5x 3 | 0 8) 2
8 | 3 4 |
|x 1| 2x 0
|x 4x 3 | |x 4x5 | 11) 2 2
|x 3x 2 | x 2x 12) 2
| |xx 13) | x 3 | 0 14) | 2 3 | 0 x 15) | 2 3 | 0 x
16) |1 5 | x 2 17) | 9 x | 1 18) | x 5 | 0
19)
2
2
4
1 2
1 0
| 3 |
x x
| 2 |
3
x
D NG 4 : BÀI TOÁN CH A THAM S
( ) 0
0
f x x
a
;
0 ( ) 0
0
f x x
a
( ) 0
0
f x x
a
;
0 ( ) 0
0
f x x
a
T đó: 1) f x ( ) 0 vô nghi m f x ( ) 0, x
2) f x ( ) 0 vô nghi m f x ( ) 0, x
3) f x ( ) 0 vô nghi m f x ( ) 0, x
4) f x ( ) 0 vô nghi m f x ( ) 0, x
Bài 1: Xác đ nh m đ BPT nghi m đúng v i m i x:
a) 2x2(m3)x m b) 3 0 2
2x (m 2)x m 0
c) (2m1)x22(m1)x 1 0 d) mx22(m3)x3m 1 0
e) (m2)x2(3m1)x4m f) 2 0 2
(m1)x (m1)x 1 2m0
Bài 2 Xác đ nh m đ b t ph ng trình sau vô nghi m:
a) mx2(2m1)x m b)1 0 2
(m1)x 2(m3)x m 2 0 c) mx2 + (m – 1)x + m – 1 < 0 d) (2m – 5)x2– 2(2m – 5)x + 1 ≥ 0
Bài 3: Tìm các giá tr m đ ph ng trình:
a) x2 + 2(m + 1)x + 9m – 5 = 0 có hai nghi m phân bi t
b) x2 – 6m x + 2 – 2m + 9m2 = 0 có hai nghi m d ng phân bi t
ThuVienDeThi.com