1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Toán 12 quyển 4 file 1

46 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 46
Dung lượng 1,25 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Một hộp không nắp được làm từ một mảnh các tông theo mẫu.. Tìm x sao cho diện tích Sx của mảnh các tông là nhỏ nhất... Một khối trụ có bán kính đáy bằng r có thiết diện qua t

Trang 1

1

ĐỀ TOÁN 12 quyển 4-file 1

ĐỀ THI THỬ THPT quốc gia NĂM 2017

Quyển 4: MỤC LỤC 4

10 8 RÈN LUYỆN CÁC BÀI TOÁN ỨNG

DỤNG

53

12 Nhóm 2 Bài toán về diện tích hình phẳng 55

13 Nhóm 3 Bài toán về liên hệ diện tích, thể tích 59

15 Nhóm 5 Bài toán liên quan đến mũ và loga 68

16 Nhóm 6 Bài toán ứng dụng tích phân - mối quan hê ̣

đa ̣o hàm và nguyên hàm

69

19 GVTrần Tiến Đạt Bài toán ứng dụng thực tế 73

Trang 2

2

Trang 3

3

MÔN TOÁN NĂM 2017

Câu 1 Trong các hàm số sau, hàm số nào đồng biến trên :

A yx33x23x2017 B yx4x22016

2

x y x

Câu 4 Cho hàm số yx46x21 Trong các mệnh đề sau, mệnh đề nào sai

A Đồ thị hàm số lồi trong khoảng (-1;1) B Đồ thị hàm số lõm (   ; 1)

C Đồ thị của hàm số lồi trong khoảng (1;  ) D Đồ thị hàm số có hai điểm uốn Câu 5 Tìm m để hàm số 1 3 2

Trang 4

y   xx   m

Các mệnh đề sau, mệnh đề nào sai:

A Hàm số luôn có cực trị với mọi giá trị m

B Hàm số luôn đồng biến trên (0;2)

C Hàm số nghịch biến trên (  ;0)

D Hàm số nghịch biến trên (0;2)

Câu 10 Một hộp không nắp được làm từ một mảnh các tông theo mẫu Hộp có đáy là một hình

vuông cạnh x (cm), chiều cao h (cm) và có thể tích là V cm3 Tìm x sao cho diện tích S(x) của mảnh các tông là nhỏ nhất

Trang 5

Câu 24 Giá trị của tích phân

Trang 6

6

A 2+3i B 2-3i C 6+6i D 6-6i

Câu 31 Số phức liên hợp của số phức z biết 1

B Hai đường tròn có tâm lần lượt O(2;1), O’(-2;-1)

C Một hình hyperbol có phưng trình 1 1

x

y

D Đường Parabol có phương trình

24

y

x

Câu 35 Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , mặt bên SAB là tam giác đều

và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC) Biết AB=3,BC=3 3 Thể tích khối chóp S.ABC là:

Câu 36 Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , mặt bên SAB là tam giác đều

và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC) Gọi M là điểm thuộc SC sao cho

MC=2MS Biết AB=3, BC=3 3 Khoảng cách giữa hai đường thẳng AC và BM là:

Trang 7

Câu 37 Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi cạnh a,  0

a

C a3 3 D

33 2

a

D 2 17

Câu 40 Một khối trụ có bán kính đáy bằng r có thiết diện qua trục là một hình vuông Tính diện tích

xung quanh của khối trụ đó

Câu 42 Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d đi qua điểm M(0;-1;1) và có

véc tơ chỉ phương u   (1; 2;0),điểm A(-1;2;3) Phương trình mặt phẳng (P) chứa đường thẳng d sao cho khoảng cách từ điểm A đến mặt phẳng (P) bằng 3 là:

Trang 8

cách từ gốc tọa độ O đến mặt phẳng (MNP) bằng:

Câu 46 Trong không gian với hệ trục tọa độ Oxyz cho hai mặt phẳng ( ) : 2  x   y mz   2 0và ( ) :  x ny   2 z   8 0 Để () song song với ( )  thì giá trị của m và n lần lượt là:

Câu 47 Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng 3 5 6 0

Câu 48 Trong không gian với hệ tọa độ Oxyz, cho điểm I(1;-2;3) Viết phương trình mặt cầu tâm I

và tiếp xúc với trục Oy

Trang 9

9

Câu 49 Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(2;0;0), C(0;4;0), S(0; 0; 4) Điểm B

trong mp(Oxy) sao cho tứ giác OABC là hình chữ nhật Tính bán kính R mặt cầu đi qua bốn điểm O,

B, C, S

Câu 50 Cho các mệnh đề sau:

(1) Hàm số yx36x29x2 Đồng biến trên khoảng (  ;1);(3;  ), nghịch biến trên khoảng (1;3)

1

x y

x m y

x

 có tất cả 2 tiệm cận với mọi m

Có bao nhiêu mệnh đề đúng :

BẢNG ĐÁP ÁN ĐỀ 5 1.A 2.B 3.B 4.C 5.A 6.A 7.B 8.C 9.D 10.A 11.C 12.B 13.C 14.C 15.D 16.D 17.C 18.A 19.C 20.B 21.B 22.C 23.D 24.C 25.B 26.B 27.A 28.C 29.A 30.D 31.B 32.D 33.D 34.C 35.C 36.A 37.C 38.D 39.A 40.C 41.C 42.B 43.A 44.A 45.B 46.C 47.A 48.C 49.C 50.B

Lời giải ĐỀ 5

Câu 1 Trong các hàm số sau, hàm số nào đồng biến trên :

A yx33x23x2017 B yx4x22016

2

x y x

Trang 10

Bình luận:Cách chọn nhanh đáp án trắc nghiệm: Với máy tính bỏ túi Casio, ta có thể thử với các

giá trị lân cận giá trị của các đáp án và các giá trị đặc biệt để khoanh vùng đáp án đúng và loại trừ đáp án sai

Câu 3 Giá trị lớn nhất, nhỏ nhất của hàm số:

Câu 4 Cho hàm số yx46x21 Trong các mệnh đề sau, mệnh đề nào sai

A Đồ thị hàm số lồi trong khoảng (-1;1) B Đồ thị hàm số lõm (   ; 1)

C Đồ thị của hàm số lồi trong khoảng (1;  ) D Đồ thị hàm số có hai điểm uốn Chọn: Đáp án C

Trang 11

x y

Ta có: y'4x38 ; '' 12x yx2  8 0 y''0 vô nghiệm => Không có điểm uốn

Câu 7 Phương trình tiệm cận đứng và tiệm cận ngang của 2 1

1

x y x

 => tiệm cận ngang là y=2

Câu 8 Đồ thị hàm số yx43x22 có số điểm cực trị là:

Trang 12

12

Chọn: Đáp án C

03

232

    Các mệnh đề sau, mệnh đề nào sai:

A Hàm số luôn có cực trị với mọi giá trị m

B Hàm số luôn đồng biến trên (0;2)

C Hàm số nghịch biến trên (  ;0)

D Hàm số nghịch biến trên (0;2)

Chọn: Đáp án D

Ta có: y'  x2 2x

y’>0 với   x (0; 2) => Hàm số đồng biến trên (0;2)

y’<0 với    x ( ;0)  (2;  )=> Hàm số nghịch biến trên từng khoảng (  ;0);(2;  )

Câu 10 Một hộp không nắp được làm từ một mảnh các tông theo mẫu Hộp có đáy là một hình

vuông cạnh x (cm), chiều cao h (cm) và có thể tích là V cm3 Tìm x sao cho diện tích S(x) của mảnh các tông là nhỏ nhất

Trang 13

Vậy bất phương trình có tập nghiệm S=(-2;0)

Câu 12 Nghiệm của bất phương trình: 9x 8.3x  9 0 là:

Câu 13 Rút gọn biểu thức: 2log 3 2

Trang 14

x x

2 3 3

(*) log 75

log (9 72) 1 log (log (9 72)) 0

x x

x x

log (log (9 72)) 0

1 log (log (9 72)) 1

x x

x x

           

Câu 16 Nghiệm của phương trình 4lg(10 )x  6lgx  2.3lg (100 )x x có dạng a

b Khi đó tích ab bằng:

Trang 15

        Kết hợp điều kiện ta được 1    x 2 S (1;2]

Bình luận:Cách chọn nhanh đáp án trắc nghiệm: Với máy tính bỏ túi Casio, ta có thể thử với các giá trị lân cận giá trị của các đáp án và các giá trị đặc biệt để khoanh vùng đáp án đúng và loại trừ đáp án sai

Câu 18 Tập xác định của hàm số 33 5

1 log

1

x y

Trang 16

Chọn: Đáp án D

Bấm máy tính=>kết quả(chú ý để máy tính ở chế độ Rad)

Câu 24 Giá trị của tích phân

Bấm máy tính=>kết quả(sau khi bấm được kết quả của tích phân,ta tính lần lượt các đáp số, thấy trùng thì ta chọn)

Câu 25 Thể tích của khối tròn xoay sinh ra bởi hình phẳng giới hạn bởi các đường có phương trình

1

2 ( )

I   x   x dx bằng:

Trang 17

17

Chọn: Đáp án A

1

1 2

1 0

Trang 18

Câu 29 Cho số phức z thỏa mãn (1  i z )   (3 i z )   2 6 i Tìm số phức w biết w2z2

A 2+3i B 2-3i C 6+6i D 6-6i

Trang 19

B Hai đường tròn có tâm lần lượt O(2;1), O’(-2;-1)

C Một hình hyperbol có phưng trình 1 1

y x

Trang 20

y

D Đường Parabol có phương trình

24

Câu 35 Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , mặt bên SAB là tam giác đều

và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC) Biết AB=3,BC=3 3 Thể tích khối chóp S.ABC là:

Gọi H là trung điểm AB => SHAB (do SAB đều)

Do (SAB)(ABC)=>SH(ABC)

2

SHACBCAB

3

Câu 36 Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , mặt bên SAB là tam giác đều

và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC) Gọi M là điểm thuộc SC sao cho

MC=2MS Biết AB=3, BC=3 3 Khoảng cách giữa hai đường thẳng AC và BM là:

Trang 21

7 7

a

C a3 3 D

33 2

Trang 22

D 2 17

a

Chọn: Đáp án D

Tứ giác AB’C’D là hình bình hành =>AB’//C’D=>AB’//(BC’D)

=>d(AB’,BD)=d(AB’,(BC’D))=d(A,(BC’D))=d(C,(BC’D))

Vì BDAC,BDCC’=>BD(OCC’)=>(BC’D)(OCC’)

Trong (OCC’),kẻ CHOC’(H thuộc OC’)

Trang 23

23

Câu 40 Một khối trụ có bán kính đáy bằng r có thiết diện qua trục là một hình vuông Tính diện tích

xung quanh của khối trụ đó

Câu 42 Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d đi qua điểm M(0;-1;1) và có

véc tơ chỉ phương u   (1; 2;0),điểm A(-1;2;3) Phương trình mặt phẳng (P) chứa đường thẳng d sao cho khoảng cách từ điểm A đến mặt phẳng (P) bằng 3 là:

Trang 24

24

A 2x-y-2z-1=0 B 2x-y-2z+1=0

C 2x+y+2z-1=0 D 2x+y+2z+1=0

Chọn: Đáp án B

Đường thẳng d đi qua điểm M(0;-1;1) và có véc tơ chỉ phương u   (1; 2;0)

Gọi n   (a; b;c)(a2  b2 c2  0) là véc tơ pháp tuyến của (P)

3

| 5 2 |

3 5

  

 Ta được phương trình (P) là 2x-y-2z+1=0

Câu 43 Trong không gian Oxyz, cho các điểm A (2;3;0); (0; B  2;0) và đường thẳng d có

phương trình 0

2

x t y

Trang 25

Câu 45 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm M(1;0;0),N(0;2;0),P(0;0;3) Khoảng

cách từ gốc tọa độ O đến mặt phẳng (MNP) bằng:

Trang 26

Tìm M thuộc d: cho x=1=>y=1,z=2=>M(1;1;2)

Vectơ chỉ phương của d là: 3 -5 -5 1 1 3; ; (4; 8; 4) / /(1; 2; 1)

Câu 48 Trong không gian với hệ tọa độ Oxyz, cho điểm I(1;-2;3) Viết phương trình mặt cầu tâm I

và tiếp xúc với trục Oy

Trang 27

Kết luận: PT mặt cầu cần tìm là (x1)2(y2)2 (z 3)2 10

Câu 49 Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(2;0;0), C(0;4;0), S(0; 0; 4) Điểm B

trong mp(Oxy) sao cho tứ giác OABC là hình chữ nhật Tính bán kính R mặt cầu đi qua bốn điểm O,

B, C, S

Chọn: Đáp án C

OABC là hình chữ nhật =>B(2; 4; 0) =>Tọa độ trung điểm H của OB là H(1; 2; 0), H chính là tâm

đường tròn ngoại tiếp tam giác vuông OCB

+ Đường thẳng vuông góc với mp(OCB) tại H cắt mặt phẳng trung trực của đoạn OS (mp có phương trình z = 2 ) tại I => I là tâm mặt cầu đi qua 4 điểm O, B, C, S

+ Tâm I(1; 2; 2) và R = OI = 1 2  2 22  3

=>(S): (x1)2(y2)2 (z 2)2 9

Câu 50 Cho các mệnh đề sau:

(1) Hàm số yx36x29x2 Đồng biến trên khoảng (  ;1);(3;  ), nghịch biến trên khoảng (1;3)

1

x y

x m y

x

 có tất cả 2 tiệm cận với mọi m

Có bao nhiêu mệnh đề đúng :



2

-2



Trang 28

28

(2)Đúng : Hàm số 2

1

x y x

(3)Sai do hàm số y=|x| đạt cực tiểu tại x = 0

Theo định nghĩa ( ) | | khi x<0 '( ) 1 khi x<0

0



Trang 29

29

(5)Sai : Hàm số có

21

x m y

x

 có 2 tiệm cận , về cơ bản thì có 2 tiệm cận thật , nhưng do dùng sai

từ nên mệnh đề trên sai , phải nói là đồ thị hàm số

21

x m y

(3) Sai là do các em chưa hiểu điều kiện để có cực trị , theo như sách giao viết , để hàm số y =f(x)

có cực trị trên (a;b) thì hàm số phải liên tục trên khoảng đó , và có f’(x) đổi dấu khi qua xo thuộc khoảng trên

(5) Sai là do các em chưa hiểu khai niệm hàm số và đồ thị hàm số , chỉ khi dùng đồ thị hàm số thì mới có điểm cực đại , cực tiểu , điểm uốn , tiệm cận

ĐỀ 6 ĐỀ THI THỬ THPT quốc gia NĂM 2017 LẦN 1 Môn : Toán

Thời gian làm bài : 90 phút

Câu 1: Cho a  0; b  0thỏa mãn a2 b2  7 ab Chọn mệnh đề đúng trong các mệnh đề sau?

Trang 30

30

A 35 3

339

339

335

24 a

Câu 12: Cho khối tứ diệnABCD Lấy một điểm M nằm giữa A và B, một điểm N nằm giữa C và D Bằng hai mặt phẳngMCDvàNABta chia khối tứ diện đã cho thành 4 khối tứ diện:

A AMCN, AMND, BMCN, BMND B AMCN, AMND, AMCD, BMCN

C BMCD, BMND, AMCN, AMDN D AMCD, AMND, BMCN, BMND

Câu 13: Người ta muốn xây dựng một bồn chứa

nước dạng khối hộp chữ nhật trong một phòng

tắm Biết chiều dài, chiều rộng, chiều cao của

khối hộp đó lần lượt là 5m, 1m, 2m (như hình vẽ)

Biết mỗi viên gạch có chiều dài 20cm, chiều rộng

10cm, chiều cao 5cm Hỏi người ta cần sử dụng ít

nhất bao nhiêu viên gạch để xây hai bức tường

phía bên ngoài của bồn Bồn chứa được bao nhiêu

lít nước? (Giả sử lượng xi măng và cát không

Câu 16: Cho hàm số

1

x y x

 có đồ thị  C Tìm m để đường thẳng d y :    x m cắt đồ thị

 C tại hai điểm phân biệt?

A 1 m 4 B m0 hoặc m2 C m0 hoặc m4 D m1 hoặc m4

Câu 17: Biểu thức Qx 3 x 6 x5 với x0viết dưới dạng lũy thừa với số mũ hữu tỷ là

5 2

7 3

Trang 31

31

Câu 20: Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số 2 1

1

x y x

A Tiệm cận đứngx1, tiệm cận ngangy   1

B Tiệm cận đứngy  1, tiệm cận ngangy  2

C Tiệm cận đứngx1, tiệm cận ngangy  2

D Tiệm cận đứngx1, tiệm cận ngangx2

Câu 21: Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?

A yx4 2 x2 2 B yx33x22 C y    x4 2 x2 2 D Tất cả đều sai Câu 22: Cường độ một trận động đất được cho bởi công thức M logAlogA0, với A là biên độ rung chấn tối đa và A0là một biên độ chuẩn (hằng số) Đầu thế kỷ 20, một trận động đất ở San Francisco có cường độ đo được 8 độ Richter Trong cùng năm đó, trận động đất khác ở Nhật Bản có cường độ đo được 6 độ Richer Hỏi trận động đất ở San Francisco có biên độ gấp bao nhiêu lần biên

Câu 24: Tìm m để hàm số y  x3 3mx23(2m1)x1 nghịch biến trên R

A m1 B Không có giá trị của m

C m1 D Luôn thỏa mãn với mọi giá trị của m

Câu 25: Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A,ABa,AC2a, SC3a

SA vuông góc với đáy (ABC) Thể tích khối chóp S ABC

a

C

35 3

a

D

34

Trang 32

32

A Hàm số đồng biến trên các khoảng2; 0và2;

B Hàm số đồng biến trên các khoảng ; 2và  0; 2

C Hàm số nghịch biến trên các khoảng ; 2và 2;

D Hàm số nghịch biến trên các khoảng2; 0và 2;

Câu 27: Hàm số y  log (2   x2 5 x  6) có tập xác định là:

 Hãy chọn mệnh đề đúng trong các mệnh đề sau:

A Đồ thị hàm số có tiệm cận ngang lày   1, có tiệm cận đứng là x0

B Đồ thị hàm số có hai tiệm cận ngang lày  1 và y   1

C Đồ thị hàm số có hai tiệm cận ngang lày  1 và y   1, có tiệm cận đứng là x0

D Đồ thị hàm số có hai tiệm cận ngang lày  1, có tiệm cận đứng là x0

Câu 30: Tính 2 4 1

23log (log 16) log 2

Câu 31: Tìm m để phương trình x4 5 x2   4 log2m có 8 nghiệm phân biệt:

A 0   m 429 B Không có giá trị của m

C 1   m 4 29 D 4 29   m 429

Câu 32: Một con cá hồi bơi ngược dòng để vượt một khoảng cách là 200km Vận tốc của dòng nước

là 8km/h nếu vận tốc bơi của cá khi nước đứng yên là v(km/h) thì năng lượng tiêu hao của cá trong 1 giờ được cho bởi công thức:E v( )cv t3 (trong đó c là một hằng số, E được tính bằng jun) Tìm vận tốc bơi của cá khi nước đứng yên để năng lượng tiêu hao là ít nhất

A 12 km/h B 9 km/h C 6 km/h D 15 km/h

Câu 33: Cho hàm số yf x ( )có đồ thị như hình vẽ sau, các khẳng định sau khẳng đinh nào là đúng?

Trang 33

33

A Hàm số đạt cực tiểu tại A ( 1; 1)   và cực đại tại B (1;3)

B Hàm số có giá trị cực đại bằng 1

C Hàm số đạt giá trị nhỏ nhất bằng -1 và đạt giá trị lớn nhất bằng 3

D Đồ thị hàm số có điểm cực tiểuA ( 1; 1)   và điểm cực đại B (1;3)

Câu 34: Cho hàm số yf x ( ) xác định, liên tục trên R và có bảng biến thiên

Khẳng định nào sau đây là sai?

A M (0;1) được gọi là điểm cực tiểu của hàm số

B x0   1 được gọi là điểm cực đại của hàm số

C f ( 1)   2 được gọi là giá trị lớn nhất của hàm số

D f (1)  2 được gọi là giá trị cực đại của hàm số

Câu 35: Cho hình chópS ABCD có đáyABCD là hình thang vuông tại A và D; biết

2

ABADa, CDa Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 600 Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD) Tính thể tích của khối chópS ABCD

a

C

3

3 15 8

a

D

3

3 5 5

a

Ngày đăng: 19/01/2022, 11:21

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w