1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Chuong II 2 Mat cau Tiet 17PPCT

15 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 825,15 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TL: Tập hợp những điểm M trong mặt phẳng cách đều một điểm O cố định cho trước một khoảng không đổi bằng R R > 0 gọi là đường tròn tâm O bán kính R.... Chúng ta quan sát một số hình ảnh [r]

Trang 1

NHIỆT LIỆT CHÀO MỪNG CÁC THẦY CÔ ĐẾN DỰ GIỜ LỚP

12B2 MÔN: HÌNH HỌC 12

TIẾT 17: MẶT CẦU

Trang 2

O

KIỂM TRA KIẾN THỨC CŨ

CH1: Nêu định nghĩa đường tròn trong mặt phẳng?

TL : Tập hợp những điểm M trong mặt phẳng cách đều một điểm

O cố định cho trước một khoảng không đổi bằng R (R > 0) gọi

là đường tròn tâm O bán kính R

CH2: Cho 1 điểm A và 1 đường tròn (O;R), có những khả năng nào về vị trí của A so với đường tròn?

- A nằm trong (O)

A

A R

O

M

OA > R

- A nằm ngoài (O)

- A nằm trên (O) OA = R

OA < R

Với điểm O cố định, r không đổi (r>0), những điểm M trong không gian cách O một khoảng không đổi r

tạo thành hình gì?

Trang 3

Chúng ta quan sát một số hình ảnh sau :

Trang 4

+ Nếu OA = r: điểm A thuộc mặt cầu

+ Nếu OA < r: điểm A nằm trong

mặt cầu

+ Nếu OA > r: điểm A nằm ngoài

mặt cầu.

M

O

A 3

A 2

A 1

§2 MẶT CẦU

I MẶT CẦU VÀ CÁC KHÁI NIỆM LIÊN QUAN ĐẾN MẶT CẦU

1 Mặt cầu: tâm O bán kính r được KH: S(O; r)

S(O; r)= {M I OM = r}

Cho mặt cầu S(O ; r) và

A là điểm bất kì trong không gian Giữa điểm

A và mặt cầu có mấy vị trí tương đối xảy ra ?

- Cho S(O; r) và điểm A

Hãy liên hệ với khối nón, khối trụ để có khái niệm khối cầu???

- Khối cầu: Tập hợp các điểm

thuộc mặt cầu cùng với các điểm

nằm trong mặt cầu đó (Hay còn gọi là hình cầu)

Liên hệ với dường tròn (O)

A nằm ngoài (O) OA >R

A nằm trên (O)  OA = R

A nằm trong (O)  OA < R.

M

O

Trang 5

O

KIỂM TRA KIẾN THỨC CŨ

CH1: Nêu định nghĩa đường tròn trong mặt phẳng?

TL: Tập hợp những điểm M trong mặt phẳng cách đều một

điểm O cố định cho trước một khoảng không đổi bằng r (r > 0) gọi là đường tròn tâm O bán kính R

CH2: Cho 1 điểm M và 1 đường tròn (O;R), có những khả

năng nào về vị trí của M so với đường tròn?

TL: Có 3 vị trí của M so với đường tròn (O;R)

- M nằm ngoài (O) OM >R

- M nằm trong (O)  OM < R

Với 2 điểm M, N bất kì trên đường tròn Đoạn thẳng

MN gọi là gì?

M

N

*Với M, N bất kì trên đường tròn ta có dây

cung MN MN đi qua O => MN là đường kính

N

Khi MN đi qua tâm O của đường tròn!!!

Trang 6

§2 MẶT CẦU

I MẶT CẦU VÀ CÁC KHÁI NIỆM LIÊN QUAN ĐẾN MẶT CẦU

1 Mặt cầu: tâm O bán kính r được KH: S(O; r)

S(O; r)= {M I OM = r}

- Vị trí điểm với mặt cầu

- Khối cầu:

* Nếu hai điểm C, D nằm trên mặt

cầu S(O ; r) thì đoạn thẳng CD được

gọi là dây cung của mặt cầu đó

* Nếu hai điểm C, D nằm trên mặt

cầu S(O ; r) thì đoạn thẳng CD được

gọi là dây cung của mặt cầu đó

- Đường kính và dây cung:

M

O C

D

B A

* Dây cung AB đi qua tâm O của mặt cầu được

gọi là 1 đường kính của mặt cầu (bằng 2r)

Một mặt cầu được xác định khi nào?

Một mặt cầu được xđ nếu biết tâm và bán kính hoặc 1 đường kính

Nếu hai điểm C, D nằm trên

mặt cầu S(O ; r) thì đoạn thẳng CD được gọi là….Nếu dây cung AB đi qua tâm O của mặt cầu

Thì AB được gọi là…

Trang 7

* Biểu diễn mặt cầu

- Hình biểu diễn của mặt cầu là một hình tròn

- Để trực quan thường vẽ thêm hình biểu diễn của một

số đường tròn trên mặt cầu.

A

B

O

A

B O

§2 MẶT CẦU

Trang 8

* Đường kinh tuyến và vĩ tuyến của mặt cầu

Kinh tuyến

Vĩ tuyến Cực

Kinh tuyến

Vĩ tuyến

§2 MẶT CẦU

Trang 9

2 Ví Dụ:

§2 MẶT CẦU

VD1: Tìm tập hợp tất cả các điểm M trong không gian

luôn nhìn AB cố định dưới 1 góc vuông

LG:

Gọi O là trung điểm của AB => O cố định

Vậy tập hợp các điểm M trong không

gian luôn nhìn đoạn thẳng AB cố định

dưới 1 góc vuông là mặt cầu tâm O

đường kính AB

A

B

M

O

A

B

M

O

2 không

Trang 10

A

B

C

a/ Ta có: DA (ABC) DA BC

Lại có: AB BC nên BC DB.

Suy ra: DAC = DBC = 90 0

Vậy A,B,C,D nằm trên mặt cầu (O; OC)

R = 5a 2

2

O

§2 MẶT CẦU

2 Ví Dụ:

VD2: Cho tam giác ABC vuông tại B, DA (ABC)

a/ Xác định mặt cầu đi qua bốn điểm A, B, C, D

LG:

A

D

B

C

O

b/ Cho AB = 3a, BC = 4a, AD = 5a

Bán kính mặt cầu nói trên là:

Trang 11

P P

R O

H

O

H

H

M P

II Vị trí tương đối giữa mặt cầu và mặt phẳng

Nếu OH < R thì (P) cắt mặt cầu theo đường tròn tâm là H và có bán kính

Điều kiện cần và đủ để mp (P) tiếp xúc với mặt cầu S(O;R) tại điểm H là mp(P) vuông góc với bán kính OH tại điểm H

§2 MẶT CẦU

Cho mặt cầu S(O;R) và mặt phẳng (P), gọi H là hình chiếu của O trên (P)

 Nếu OH > R thì (P) không có điểm chung với mặt cầu.

 Nếu OH = R thì (P) tiếp xúc với mặt cầu tại điểm H.( Hay (P) là tiếp diện )

Nếu (P) đi qua tâm O của mặt cầu thì (P) gọi là mặt phẳng kính của mặt cầu

rROH

Trang 12

Cho mặt cầu tâm O, đường kính AB=10cm; điểm M nằm trên

AB sao cho Mặt phẳng (P) đi qua M và vuông góc với AB.

a) Vị trí tương đối của mặt phẳng (P) và mặt cầu (O):

A (P) tiếp xúc với mặt cầu (O) tại M.

B (P) cắt mặt cầu (O) theo giao tuyến là đường tròn tâm M.

C (P) và (O) không có điểm chung.

D (P) là mặt phẳng kính của mặt cầu (O).

b) Đường tròn giao tuyến của (P) và (O) là:

A (O; 5).B (M; 5) C (M; 4) D (M; 3)

VÍ DỤ

§2 MẶT CẦU

Trang 13

Củng cố

niệm: dây cung, đường kính, điểm trong điểm ngoài,……

cầu

Hướng dẫn học ở nhà

• Ôn lại các khái niệm liên quan: trục của đường tròn, tính chất đường kính và dây cung, mặt phẳng trung trực,…

Trang 14

Kính chúc các thầy cô sức khỏe, công tác tốt.

Chúc các em học tập tốt

20-11

Trang 15

BÀI TẬP TRẮC NGHIỆM CỦNG CỐ

1) Cho tam giác ABC vuông tại B; D nằm ngoài (ABC) và

Mặt cầu đi qua 4 điểm A, B, C, D là:

A , O là trung điểm AC B , O là trung điểm DC.

C , O là trung điểm DC D , O là trung điểm DC.

2) Cho hình chóp tam giác S.ABC đáy ABC là tam giác đều cạnh a và Tâm mặt cầu đi ngoại tiếp hình chop S.ABC là:

A Trung điểm SC

B Trung điểm SO, O là tâm đường tròn ngoại tiếp tam giác ABC.

C Trung điểm SC.

D Điểm giao giữa đường thẳng d (trục của đường tròn ngoại tiếp tam giác ABC, đi qua O) và mặt phẳng trung trực của cạnh SA.

Ngày đăng: 08/11/2021, 00:48

w