1. Trang chủ
  2. » Giáo án - Bài giảng

De thi HK 1 nam hoc 2015 2016

5 7 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 143,46 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Câu III: 3 điểm: Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AB = 2CD.Gọi M,N lần lượt là trung điểm của các cạnh SA,SB và O là giao điểm của AC và BD.. a Tìm giao tuyến c[r]

Trang 1

THI KIỂM TRA HỌC KỲ I MÔN : TOÁN LỚP 11

Thời gian: 90 phút

ĐỀ:

I PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7điểm)

Câu I: (2 điểm) Giải các phương trình sau

a/ tan(4x15 )0  3 b/ 3cos x 4cos x 72  

c/ cosx 3 sinx 2 d/ 2cos 32 x sin 6x 3sin 32 x 2

Câu II: (2 điểm)

1/ Tìm số hạng không chứa x trong khai triển

18 2

2

x x

2/ Trên giá sách có 4 quyển sách Toán, 5 quyển sách Vật lý và 3 quyển sách Hóa học Lấy ngẫu nhiên 4 quyển Tính xác suất sao cho:

a) 4 quyển lấy ra có ít nhất 1 quyển sách Vật lý

b) 4 quyển lấy ra có đúng 2 quyển sách Toán

Câu III: (3 điểm): Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AB = 2CD.Gọi M,N lần lượt là trung điểm của các cạnh SA,SB và O là giao điểm của AC và BD

a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD) ; (SAD) và (SBC)

b) Chứng minh MN // CD và MD // NC

c) Tìm giao điểm I của đường thẳng AN với (SCD)

II PHẦN RIÊNG (3điểm) Thí sinh học theo chương trình nào làm theo chương trình đó

1 Theo chương trình chuẩn

Câu Iva: (1điểm)

Giải phương trình: 2cos 2x4cosx 1 sinx 2sin cosx x

Câu Va: (2 điểm) Trong mpOxy cho A(1;3) và v ( 2;1)

đường thẳng d:

3x 2y  9 0

a/ Tìm ảnh của d qua phép tịnh tiến vectơ v

b/ Tìm ảnh của A qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O góc 900 và phép vị tự tâm O tỉ số k = - 2

2 Theo chương trình nâng cao

Câu IVb (1 điểm)

Giải phương trình:

3 4sinxcos x( ) 4sin( x co) sx 2sin( x cos x 1

Câu Vb (2 điểm) Trong mpOxy cho A(1;3) và v ( 2;1)

đường thẳng d:

3x 2y  9 0

a/ Tìm ảnh của d qua phép đối xứng trục Ox

Trang 2

b/ Tìm ảnh của d qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm A tỉ số k = 2 và phép tịnh tiến vectơ v

ĐÁP ÁN THI HỌC KÌ I KHỐI 11 (ban cơ bản)

I.a

0.5điểm

0

tan(4 15 ) 3

tan(4 15 ) tan 60

x x

0,25

0

4

I.b

0.5điểm

2 7cos x 4cos x 3  đặt t =cos x;   1 t 1

1( ) 3

7

 

t nhan

t nhan

0,25

2

0, 25

Ic

0.5điểm

Chia 2 vế cho 2 ta được

2 x 2 x 2 2

sin cos cos sin

0,25

2

2

 



2 12 7

2 , 12

 

 

0,25

Id

0.5điểm

2cos 3x sin 6x 3sin 3x 2

Ta có cos3x 0 x6k 3

không phải là nghiệm của phương trình, suy ra cos3x0, chia 2 vế cho cos 3x2 ta được

2

tan 3x 2 tan 3x 0

0,25

tan 3 0 tan 3 2

x x

3 arctan 2



x k

k k x

0,25

IIa

1điểm Số hạng TQ:

18

2 ( )  2   

k

x

0, 5

Trang 3

Theo YCĐB: k 2(18 k) 0  k12 0,25

Số hạng không chứa x trong khai triển là: C181226  9792 0,25

IIb

2 điểm

Mỗi cách chọn 4 quyển sách bất kỳ là một tổ hợp chập 4 của 12 phần tử

4 12

( )    495

0,5

12 7 5

( )    460

460 92 ( )

495 99

2 2

4 8

( )  168 

168 56 ( )

495 65

IIIa

1điểm

* Tìm: (SAC) ( SBD)

Ta có S là một điểm chung

Ta có: O AC (SAC)

O BD (SBD)

Suy ra:O là điểm chung thứ 2

Vậy: (SAC) ( SBD)SO

1

IIIb

1điểm

Vậy: DC MN/ /

0,25

1 MN//AB; MN=DC=

2

0,25 0.25

IIIc

1điểm

Tìm (SAB) ( SCD)

Ta có S là một điểm chung thứ nhất

Mặt khác:

/ / DC

AB

AB SAB SAB SDC St AB

DC SDC

0,5

Gọi K là giao điểm của AN và St.

K AN

0, 5

IVa

2

os 1) 4cos 1 sinx(1 2cos )

4 os 4 cos 3 sinx(1 2cos )

4(cos )(cos ) sinx(1 2cos )

2cos 2 4cos 1 sin 2sin cos

2(2c c

Trang 4

3 2(1 2c osx)( c osx ) sinx(1 2cos ) 0

2 (1 2cosx)( 2c osx 3 sinx)=0

3

*2c osx 3 sinx=0    PTVN vì 2 2 2

VIa

a

1điểm

Gọi d’ là ảnh của d qua phép T v

Ta có d’ // d nên d’ có dạng :

Lấy M( 3;0) d T M v( )M'

VIa

b

1điểm

Gọi A1 Q(0,900 )( )A

Gọi A' V( ; 2)O ( )A1

IVb

1điểm

3 4sinxcos x 4sin x cosx 2sin x cos x 1

4sin xsinx

cosx+2cosxcosx

0,25

4sin x 4sinxcosx 2cos x 1

Xét cosx =0 không thỏa phương trình

Xét cos x 0 , chia 2 vế của phương trình cho cos x2 , ta được:

2 3tan x 4tanx 1 0  

0,25

4 1

1 tan x

x arctan k



0,25

Vb

2điểm Gọi d’ là ảnh của d qua phép đối xứng trục Ox.M x y( ; )d, D ( )Ox MM' M x y'( '; ')d' 0, 5

3x 2y  9 0

0, 5

Gọi d‘ là ảnh của phép đồng dạng cần tìm.

Suy ra d'/ /d nên d1: 3x 2y c 0

Lấy M( 3;0) d ;

( ,2)

'(x'; y') V (M) ' 2

'( 7; 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

M

''   (M')  M''( 9; 2)  

v

Goi M T

thay vào d' ta được

0, 5

0 5

Trang 5

3.( 9) 2.( 2)      c 0 c 23

Vậy d1 : 3x 2y 23 0 

Ngày đăng: 07/11/2021, 21:54

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w