1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Physics exercises_solution: Chapter 32 pptx

17 293 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Physics Exercises Solution: Chapter 32
Trường học University of Science
Chuyên ngành Physics
Thể loại Bài tập
Năm xuất bản 2023
Thành phố Hanoi
Định dạng
Số trang 17
Dung lượng 297,21 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

32.33: Using a Gaussian surface such that the front surface is ahead of the wave front noelectric or magnetic fields and the back face is behind the wave front as shown at right, we have

Trang 1

32.1: a) 1.28s.

s m 10 00 3

m 10 84 3

8

8

c

d t

b) Light travel time is:

s 10 72 2 ) hour 1 (

) s 3600 ( ) day 1 (

) hours 24 ( ) year 1 (

) days 365 ( ) years 61 8 ( years

61

km

10 8.16 m

10 8.16 s) 10 (2.72 s) m 10 0 3

 ct

d

32.2: dct (3.0108 m s)(6.010 7 s)180m

32.3: B ) maxcos( ˆj maxcos 2  ˆj



 

c

z f B

ωt) kz B

s) m 10 00 3 ( Hz) 10 10 6 ( 2 cos ) T 10 80 5 ( )









B(z ,t)(5.8010 4 T)cos((1.28107m 1)z (3.831015 rad s)t ˆj

E(z,t)(B y (z,t) j)(c k)

E(z,t)(1.74105 V m)cos((1.28107 m 1)z(3.831015 rad s)t) i

m 10 35 4

s m 10 00 3 λ

14 7

8

f

s m 10 00 3

m V 10 70

8

3 max

c

E

B

c) The electric field is in the x -direction, and the wave is propagating in the

z-direction So the magnetic field is in the y-direction, since SEB.Thus:

.ˆ ) ) s rad 10 34 4 ( ) m 10 45 1 cos((

) m V 10 70 2 ( ) (

ˆ s m 10 00 3 ) Hz 10 90 6 ( 2 cos V/m) 10

70 2 ( ) , (

ˆ 2

cos ˆ

( cos )

,

(

15 1

7 3

8 14

3

max max

i E

i E

i i

E

t z

z,t

z t

π t

z

t c

z πf E

ωt) kz E

t

z













 

AndB( , ) ( , ) ˆj (9.00 10 12 T)cos((1.45 107 m 1)z (4.34 1015rad s)t ˆj

c

t z E t

Trang 2

32.5: a)  direction.y

) s rad 10 65 2 (

) s m 10 00 3 ( 2 2 λ λ

2

12

8

ω

πc πc

πf

ω

c) Since the electric field is in the z -direction, and the wave is propagating in the

y

-direction, then the magnetic field is in the x -direction (SEB) So:

B( , ) ( , )iˆ 0 sin( iˆ 0 sin( y t iˆ

c c

E t

ky c

E c

t y E t

i

) s m 10 00 3 (

) s rad 10 65 2 ( sin s m 10 00 3

m V 10 10 3 )

,

8

12 8

5









ˆ ) s rad 10 65 2 ( ) m 10 83 8 sin((

) T 10 03 1 ( )

(

32.6: a)  direction.x

2

) s m 10 0 3 ( m rad 10 38 1 ( 2

2

π π

kc f c

f π λ

π

k

c) Since the magnetic field is in the  y-direction, and the wave is propagating in the

x

 -direction, then the electric field is in the z -direction (SEB) So:

ˆ ) ) s rad 10 14 4 ( ) m rad 10 38 1 sin((

) m V 48 2 ( ) , (

ˆ ) s rad 10 14 4 ( ) m rad 10 38 1 sin((

)) T 10 25 3 ( ( ) , (

ˆ 2 sin(

ˆ ) , ( )

,

(

12 4

12 4

9 0

k E

k E

k k

E

t x

t y

t x

c t

x

f kx cB

t x cB

t

x

Hz 10 30 8

s m 10 00 3

8

f c

m 361

2 λ

k

c) ω2f 2π(8.30105 Hz)5.21106 rad s

(3.00 108m s)(4.82 10 11 T) 0.0145V m

max

E

s m 10 00 3

m V 10 85

8

3 max

max

c

E B

T 10 5

T 10 28

5 11 earth

B

B

and thus Bmaxis much weaker than Bearth

Trang 3

B E B

cB K

K

B B

vB

0



) 23 1 ( ) 74 1 (

) T 10 80 3 ( ) s m 10 00 3

) 18 5 ( ) 64 3 (

s) m 10 00 3

B

E K K

c v

Hz 0 65

s m 10 91 6

f

v

s m 10 91 6

m V 10 20

7

3

v

E

B

) 18 5 ( 2

) T 10 04 1 )(

m V 10 20 7 ( 2

2 8

0

10 3

0

B

K

EB

I

Hz 10 70 5

s m 10 17 2

14

8

f v

Hz 10 70 5

s m 10 00 3

14

8 0

f

c

s m 10 17 2

s m 10 00 3

8

8

v

c

n

d) 2 (1.38)2 1.90

2

2

v

c K K

c

E

32.12: a) v  fλ(3.80107 Hz)(6.15m)2.34108 m s

) s m 10 34 2 (

) s m 10 00 3 (

2 8

2 8 2

2

v

c

K E

max

2 max

2

max max

max

E

c) (4 2) (1.075 10 5 W m2 (4 (2.5 103 m)2 840W

P

d) Calculation in part (c) assumes that the transmitter emits uniformly in all directions

Trang 4

32.14: The intensity of the electromagnetic wave is given by Eqn 32.29:

2 rms 0

2

max

0

2

I    Thus the total energy passing through a window of area Aduring

a time t is

J 9 15 ) s 0 30 )(

m 500 0 ( ) m V 0200 0 ( ) s m 10 00 3 ( ) m F 10 85 8

2

rms

32.15: (4 2) (5.0 103 W m2 (4 (2.0 1010m)2 2.5 1025 J

P

32.16: a) The average power from the beam is

W 10 4 2 ) m 10 0 3 ( m W 800 0

 IA P

b) We have, using Eq 32.29, 2

rms 0

2 max 0 2

m V 4 17 s) m 10 00 3 )(

m F 10 85 8 (

m W 800 0

8 12

2 0

c

I E

rad 2.7010 W m

 cp

I

Then P avI(4r2)(2.70103 W m2)(4)(5.0m)2 8.5105 W

m 354 0

s m 10 00 3 λ

8

8

c

f

s m 10 00 3

m V 0540

8

max max

c

E

B

2

) T 10 80 1 ( ) m V 0540 0 ( 2

2 6

0

10 0

EB S

I av

max 2

0

2 max

2 )

4 (

Pc E

r c

E A S

P av

) m 00 5 ( 2

) s m 10 00 3 ( ) W 0 60 (

2

0 8

E

s m 10 00 3

m V 0

8

max max

c E B

Trang 5

32.20: a) The electric field is in the  -direction, and the magnetic filed is in the z y  -direction, so Sˆ  Eˆ Bˆ (j)kˆi.ˆ That is, the Poynting vector is in the  -x

direction

b) ( , ) ( , ) ( , ) cos( )

0

max max 0

t kx B

E t

x B t x E t

x

(1 cos(2( )))

2 0

max

E

But over one period, the cosine function averages to zero, so we have:

2

|

0

max max

B E

S av

s) m 10 0 3 (

m W

2 8

2

c

S dV

b) The momentum flow rate 2.6 10 Pa

s m 10 0 3

m W 780

8

2

c

S dt

dp A

av

s m 10 0 3

m W 2500

8

2 rad

c

S dt

dp A

atm Pa 10 013 1

Pa 10 33

5

6 rad

 p

s m 10 0 3

) m W 2500 ( 2 2

8

2 rad

c

S dt

dp A

5

5

atm Pa 10 1.013

Pa 10 67

momentum vector totally reverses direction upon reflection Thus the change in

momentum is twice the original momentum

s) m 10 0 3 (

m W

2 8

2

c

S dV

c

E Ec E

E S

0

0 0 0 0

0 0

0 2

0

0 2

0 0

2 0 0

2

0

cE c

E

Trang 6

32.24: Recall thatSE B ,so:

a) Sˆ iˆ(j)kˆ

b) Sˆ  ˆjiˆkˆ

c) Sˆ (kˆ)(iˆ) ˆ.j

d) Sˆ iˆ(kˆ)j

max max

B

 B

E is in the direction of propagation For E

in the + x -direction, EB

 is in the + z

-direction when B is in the +y-direction

) Hz 10 0 75 ( 2

s m 10 00 3 2

2

λ

6

8

f

c x

b) The distance between the electric and magnetic nodal planes is one-quarter of a

2

m 00 2 2 4

Hz) 10 20 1 ( 4

s m 10 10 2 4

4

10

8

f v

b) The distance between the electric and magnetic antinodes is one-quarter of a

Hz) 10 (1.20 4

s m 10 2.10 4

4

10

8

f v

c) The distance between the electric and magnetic nodes is also one-quarter of a wavelength

m

10 38 4 Hz) 10 4(1.20

m/s 10 2.10

4

4

3 10

8

f

v

λ

) Hz 10 50 7 ( 2

s m 10 00 3 2

2

λ

8

8

f

c

at the planes, which are 80.0 cm apart, and there are two nodes between the planes, each 20.0 cm from a plane It is at 20 cm, 40 cm, and 60 cm that a point charge will remain at rest, since the electric fields there are zero

32.29: a) λ 2 2(3.55mm) 7.10mm

2

b) x E x B 3.55mm

c) vfλ(2.201010 Hz (7.1010 3 m)1.56108 m s

Trang 7

32.30: a) ( , ) 2 ( 2 maxsin sin ) ( 2 maxcos sin )

2 2

2

ωt kx kE

x ωt kx E

x x

t x

E y

2 0 0 max

2

2 max

2 2

2

t

t x E t

kx E

c t kx E

k x

t x

Similarly: ( , ) 2 ( 2 maxcos cos ) ( 2 maxsin cos )

2 2

2

t kx kB

x t kx B

x x

t x

) , ( cos

cos 2

cos cos 2

) , (

2

2 0 0 max

2

2 max

2 2

2

t

t x B t

kx B

c t kx B

k x

t x

x x

t

x

E y

 ) 2 cos sin sin

sin 2

( )

,

(

max

) , ( )

cos cos 2

( )

,

(

sin cos 2

sin cos 2

sin cos 2

)

,

(

max

max

max max

t

t x B t

kx B

t x

t

x

E

ωt kx B

t kx c

E t

kx E

c x

t

x

E

z y

y

x x

t x

B z( , ) (2 maxcos cos )2 maxsin cos

c t kx B

c x

t x

B z( , )  2 maxsin cos 2 2 maxsin cos

, ( )

sin sin 2

( cos

sin 2

)

,

(

0 0 max

0 0 max

0 0

t

t x E t

kx E

t t

kx E

x

t

x

Hz 10 6.50

s m 10 3.00

21

8

f c

Hz 10 75 5

s m 10 00 3 λ

: light

14

8

f c

m 5000

s m 10 3.0 λ

4

8

c

f

m 5.0

s m 10 3.0 λ

7

8

c

f

m 10 5.0

s m 10 3.0 λ

13 6

8

f

m 10 5.0

s m 10 3.0 λ

16 9

8

f

Trang 8

32.33: Using a Gaussian surface such that the front surface is ahead of the wave front (no

electric or magnetic fields) and the back face is behind the wave front (as shown at right),

we have:

0

encl

x

ε

Q E

E 

Bd AB x A0B x 0

So the wave must be transverse, since there are no components of the electric or magnetic field in the direction of propagation

32.34: Assume E Emaxˆjsin(kxt)andBBmaxkˆsin(kxt),with  

Then Eq (32.12) implies:

0 )

cos(

)

kx kE

x t

B x

λ

λ / 2

2

max max

max max

max max

k E

B

 Similarly for Eq.(32.14)

0 0  maxcos(   ) 0 0 maxcos(  ) 0

t

E x

/ 2

2

max max

2 max 2

max 0 0 max max

0 0

c

E c

fλ E

λ c

f E

k B

E

Trang 9

32.35: From Eq (32.12): 2

) , ( )

, (

t

t x B t

t x B t x

t x E t

z z

y







t

t x E x

x

t x B x

y

0

0

2 0

0

) , (

t

t x

B z

 

2 0 0 2

2

t

t x B x

t x

2

1 2

1 )

cos(

) ,

max 0

2 0

E t

x

c

E c

0

2 2

max 0

2 max

2 0

2 ) cos(

2

1 ) cos(

32.37: a) The energy incident on the mirror is Pt IAt cE2At

0

2

1 

J 10 5.20 s) (1.00 ) m 10 00 5 ( ) m V 028 0 ( s m 10 00 3 ( 2

b) The radiation pressure 2 (0.0280V m)2 6.94 10 15 Pa

0

2 0 rad

c

I p

rad

I

W

10 1.34 m)

(3.20 Pa) 10 (6.94 s) m 10 00 3 (

Trang 10

32.38: a) 7.81 10 Hz.

m 0384 0

s m 10 00 3 λ

9

8

c

f

s m 10 00 3

m V

8

max max

c

E

B

c) (3.00 10 m s)(1.35V m) 2.42 10 W m

2

1 2

0

2 max 0

I

s) m 10 00 3 ( 2

) m (0.240 T) 10 (4.50 m) V 35 1 ( 2

12 8

0

2 9

0

 c

EBA c

IA pA

F

m) 10 (2.50

W) 10 4(3.20

2 3

3

π D

P A

P I

) s m 10 (3.00

) m W 2(652 2

2

1

8 0

2 0

2

c

I E

cE I

s m 10 3.00

m V

8

c

E

B

4

1 4

0

2 max 0

of

2

1

since we are averaging

c) In one meter of the laser beam, the total energy is:

4 2

) ( 2

tot

J

10 1.07 m)/4 (1.00 m) 10 50 2 ( ) m J 10 09 1 (

tot

Trang 11

32.40: a) The change in the momentum vector determines prad If W is the fraction absorbed, P  PoutPin (1W)p(p)(2W)p.Here, (1W)is the fraction

reflected The positive direction was chosen in the direction of reflection p is the

magnitude of the incoming momentum With Eq 32.31, and taking the average, we getprad (2W)C I Be careful not to confuse p, the momentum of the incoming wave,

with prad, the radiation pressure

b) (i) totally absorbing

C

I p

W 1so rad 

(ii) totally reflecting

C p

W 0so rad  2

These are just equations 32.32 and 32.33

10 00 3

) m W 10 40 1 ( 9 0 2 ( W/m

10 40 1 ,

9

s m 8

2 3 rad

2

W

Pa 10 87 8 10

00 3

) m W 10 40 1 ( 1 0 2 ( m

W 10 40 1 ,

1

s m 8

2 2 rad

2

W

32.41: a) At the sun’s surface:

Pa 21 0 s m 10 00 3

m W 10 4 6

m W 10 4 6 m) 10 96 6 ( 4

W 10 9 3 4

8

2 7

rad

2 7

2 8

26 2

c

I p

R

P A

P I IA

P

Halfway out from the sun’s center, the intensity is 4 times more intense, and so is the radiation pressure:prad(Rsun/2)0.85Pa

At the top of the earth’s atmosphere, the measured sunlight intensity is

2

m

W

1400

,

Pa

10

5  6 which is about 100,000 times less than the values above

b) The gas pressure at the sun’s surface is 50,000 times greater than the radiation pressure, and halfway out of the sun the gas pressure is believed to be about 6 1013

times greater than the radiation, pressure Therefore it is reasonable to ignore radiation pressure when modeling the sun’s interior structure

Trang 12

32.42: a) (1 cos2( ))ˆ ( , ) 0 cos2( ) 1,

2 ) , (

0

max

t

S

which never happens So the Poynting vector is always positive, which makes sense since the direction of wave propagation by definition is the direction of energy flow

b)

dt

di nA A

dt

dB dt

d dt

di n dt

dB ni

dt

di r n dt

di nA r

E dt

d

0 0

l

2

0

dt

di nr

E 

b) The direction of the Poynting vector is radially inward, since the magnetic field is along the solenoid’s axis and the electric filed is circumferential It’s magnitude

2

2 0

di ri n

EB

 

2 )

( 2

2

) ( 2

2 2 2 0 2 2

2 0 0

2 0 0

a ul lA u U i n ni

B

2

2 2 0

2 2 2 0

2

ila n i

la i n i

U Li

Li

U         and so the rate of energy increase due to the increasing current is given by 2 2

0

dt

di ila n dt

di Li

d) The in-flow of electromagnetic energy through a cylindrical surface located at the

2

0

2 0

dt

di ila n al

dt

di ai n πal S

S  e) The values from parts (c) and (d) are identical for the flow of energy, and hence we can consider the energy stored in a current carrying solenoid as having entered through its cylindrical walls while the current was attaining its steady-state value

Trang 13

32.44: a) The energy density, as a function of x, for the equations for the electrical and

magnetic fields of Eqs (32.34) and (32.35) is given by:

t kx E

E

u  4 2 sin2 sin

max 0

2

2

1 4 sin sin

and 2

1 4 cos cos

,

ωt t

t

2

k

x

And for ,sin 0,cos 0 ˆ ˆ ˆ ˆ ˆ ˆ

2   kxkx  SEB jki

k

x k

2

1 4

3 sin sin

and 2

1 4

3 cos cos

, 4

3

t t

For 0 ,sin 0,cos 0 ˆ ˆ ˆ ˆ ˆ ˆ

k

x

k

x k

 c) the plots from part (a) can be interpreted as two waves passing through each other

in opposite directions, adding constructively at certain times, and destructively at others

Trang 14

32.45: a) 2

a

I A

I J E

 , in the direction of the current

2

0 0

a

I B I d

l

B counterclockwise when looking into the current

c) The direction of the Poynting vector Sˆ  Eˆ Bˆ kˆˆρˆ, where we have used

cylindrical coordinates, with the current in the z-direction.

2 0

2 0

1

a

ρI a

I a

ρI EB

S

d) Over a length l, the rate of energy flowing in is 2

2 3

2

2

a

lI al a

I SA

 The thermal power loss is 2 ,

2 2

2

a

lI A

l I R I

 

 which exactly equals the flow of electromagnetic energy

0 0

0

r

q E

q EA d

r

i



so the magnitude of the

2

0 3 2 0

dq r

q r

qi EB

S

Now, the rate of energy flow into the region between the plates is:







2 2

1 )

( 2

1 )

2

0

2 2 0

2

dU C

q dt

d q A

l dt

d dt

q d r

l dt

dq r

lq rl

S d

A

S 

This is just rate of increase in electrostatic energy U stored in the capacitor

32.47: The power from the antenna is 4

2

2 0

2

cB IA

T 10 42 2 ) s m 10 00 3 ( ) m 2500 ( 4

) W 10 50 5 ( 2 4

8 2

4 0

2

0 max

c r

P B

max

dt

dB

V

0366 0 4

) s T 44 1 ( ) m 180 0 ( 4

2 2

dt

dB D dt

dB A dt

d

) s m 10 00 3 (

) m 36 W 10 80 2 ( 2 2

2

1

8 0

2 3

0

2

c

I E

cE A

P

I

Ngày đăng: 17/01/2014, 04:20

w