1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Physics exercises_solution: Chapter 30 pptx

33 222 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Physics Exercises and Solutions: Chapter 30
Trường học Vietnam National University, Hanoi
Chuyên ngành Physics
Thể loại exercise solution
Thành phố Hanoi
Định dạng
Số trang 33
Dung lượng 404,62 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

b From the graph, as t ,V R 25V,so there is no voltage drop across the inductor, so its internal resistance must be zero... 30.63: a In the R-L circuit the voltage across the resistor

Trang 1

4

3 2

(0.00285

A)(1.40V)106.12()/(/

b) Terminal a is at a higher potential since the coil pushes current through from b to

aand if replaced by a battery it would have the  terminal at a

m)120.0(2

)m1080.4()1800()500(2

2 0 m

π

μ πr

A N μ K K

Trang 2

30.9: For a long, straight solenoid:

.//

di b a Thus, the current is decreasing

b) From above we have that di(4.00A/s)dt After integrating both sides of this expression with respect to t, we obtain

A

4.00s)

(2.00A/s)(4.00A)

0.12(s)

/A00.4

42

0.12()m1000.5(

J)(0.390m)150.0(44

2 2

4 0

2 0

μ

πrU N

A)(80.0

J)1073.1(222

1

2

7 2

I

U L LI

U

30.15: Starting with Eq (30.9), follow exactly the same steps as in the text except that

the magnetic permeability  is used in place of 0

Trang 3

30.16: a) free space: (0.0290m ) 3619J.

2

T)(0.560V

)450(2

T)(0.560V

2V

0

2

0 m

U K

2

6 0

2 0 0

2

m1.25T)

(0.600

J)1060.3(22

J)1060.3(2

3

6 0

)A50.2()600(2

b) From Eq (30.10), 7.53J/m

2

)T1035.4(2

3 0

2 3

c) Volume V2rA2 (0.0690m)(3.5010 6 m2)1.5210 6 m3

d) U  uV (7.53J/m3)(1.5210 6m3)1.1410 5 J

)m0690.0(2

)m1050.3()600(2

6 2

6 2

L

(3.65 10 H)(2.50A) 1.14 10 J

2

12

V00.60

L

iR dt

di

H50.2

)00.8()A500.0(V00.6A

00

dt

di i

8.00

V00.6)1

(s

200

8.00

V00.6

Trang 4

(1000

A0.0259

e1A0.030)

e(1

R Battery L

R

) ( max

10 20

Ri V

i

μs

R / L /

(or, could use VL dt di att20s)

L

c)

30.21: a) i/R(1et/ ), L/R

2 1 2

1 max

max ε/Rsoii /2when(1e/ τ) ,ande/ τ

i

μs

L t τ

50.0

H)10(1.252)ln(R

ln2and

)(

1et/τ  t/τ   

μs L

t  ln(0.2929)/R 30.7

Trang 5

30.22: a) 2.13A

H0.115

J)260.0(22

LI U

/ ( 2 2 2

) / (

2

12

12

12

12

1ln)2(120

H115.02

1ln2

21

4

) / ( 2

e R L t

240

V60

)H160.0(2

1ln2

2 / 1 )

/ ( 0

2 /

e I

)V00.6()1

()1

( ( / ) 2 ( / ) 2 ( 8 00 / 2 50 H ) 0

t t

L R t

L

R e

I i

 b) 2 2 ( / ) 2 2 (1 ( 8 00 / 2 50 H ) )2

00.8

)V00.6()1

R

ε R

()W50.4( ( 3 20 s 1 )t 2

 c) (1 (R/L)t) (R/L)t 2 ( (R/L)t 2 (R/L)t)

R

ε e

L

ε L e

R

ε dt

di iL

Trang 6

30.26: When switch 1 is closed and switch 2 is open:

.)

/(ln

0

) / ( 0 0

0

0

L R t

i I

t

e I i t L

R I

i

t d L

R i

i d L

R i dt

di iR

dt

di L

14

12 2

6 2

2 2

)H1037.2()1040.5(4

14

3 2

5 2

min 2 2 max

Trang 7

30.29: a)  2 2π LC 2π (1.50H (6.0010 5F)

ω

π T

H50.1(

s0230.0cos

)C1020.7()cos(

ωt Q

q t

5.4310 4C.Signs on plates are opposite to those at t 0

e) 0.0230 s, ωQsin(ωt)

dt

dq i

H)10(6.00H)(1.50

s0.0230sin

H)10H)(6.00(1.50

C107.20

5 5

C)10(5.432

3 5

2 4 2

 Li

U L

Trang 8

30.30: (a) Energy conservation says U L(max)=U C(max)

A0.871H

1012

F1018V)22.5(

CV2

12

1

3

6 max

2 2

2 

at 41 period: (12 10 H)(18 10 F)

2)2

(4

14

LC T

C10150

C T

Trang 9

30.32: 1917rad/s

)F1020.3(H0850.0(

A1050

max max max

7 2

2

s1917

A1000.5)C1043.4(    

LC dt

q d

6.4510 6C

F1060.3

C1050.8

ω

i Q ωQ

J450.0)F1050.2(2

)C1050.1(2

.C1050.1)F1050.2(H400.0()A50.1(

10

2 5 max

2 max

5 10

Q

)F1050.2(H400.0(

11

(must double the frequency since it takes the required value twice per period)

A

1ss

CV

ΩV

CsΩV

CHFH]

q d

We will solve the equation using:

.11

0)cos(

)cos(

1

)

cos(

)sin(

)(

cos

2 2

2

2

2 2

2

LC

ω LC

ωt LC

Q ωt

Q ω q LC

dt

q

d

ωt Q ω dt

q d ωt

ωQ dt

dq ωt

Trang 10

30.37: a) cos ( ).

2

12

C

ωt Q

sin2

12

LC

ω C

ωt Q

ωt Q

Lω Li

2

1)(

cos2

C

Q U

cos2

C Q

22)cos(

2

)

sin(

)cos(

2

) 2 / ( )

2 / ( 2

2 2

) 2 / ( )

2 / (

L

R A ω t

ω e

L

R A dt

q d

t ω Ae

ω t

ω e

L

R A dt dq

t L R t

L R

t L R t

L R

ω2Ae (R/ 2L)tcos(ωt)

2

2 2

2

2 2 2

2 2

41

0

12

2

L

R LC ω

LC L

R L

R q LC

q dt

dq L

R dt

q d

At

.4//

12

2

tan2

andcos

0sincos

2and

cos

2

R LC L

R

ω L

R Q

ω L

QR Q

A

A ω A

L

R dt

dq Q

A q

Trang 11

30.39: Subbing , , , 1,

C k R b L m q

a) Eq (13.41): 0 Eq.(30.27): 2 0

2 2

dq L

R dt

q d m

kx dt

dx m

b dt

x d

4

1:

)28.30.(

Eq

2 2

2

L

R LC

ω m

b m

C

sF

L

30.41:

LC LC

L R LC LC

L R LC L

R

1126

1146

14

1F)

10(4.60H)(0.285

1)

H285

11

,0

R

0

)95.0(4

11

)41

(95

L

C R LC

L R LC ω

ω

F)10(2.50

(0.0975)H)

4(0.450)

)95.0(1(

30.43: a)

b) Since the voltage is determined by the derivative of the current, the V versus t graph

is indeed proportional to the derivative of the current graph

Trang 12

30.44: a) ((0.124A)cos[(240π s)t]

dt

d L dt

di L

ε 

ε(0.250H)(0.124A)(240)sin((240 s)t)(23.4V)sin((240π s)t)

b) max 23.4V;i0,since the emf and current are 90out of phase

c) imax 0.124A; 0,since the emf and current are 90 out of phase

22

)(2)

r

dr Nih μ hdr r π

Ni μ hdr

B

b a

b a

b a

)()

/)(1(ln)

/

(

ln

2 0 2

h N μ a

a b a

a b a a b a

b

1

2 2 2 1 0 1

2 2 1 0 1

1 1 0 1

2 2 1

2 2 2

1

r π N N μ l

A N N μ l

IA N μ IA

A N A

A I

N I

2 1 0 2 2

dt

di l

r π N N μ dt

di l

A N μ N dt

d N

1

2 2 2 1 0 2 2

12

1

dt

di l

r π N N μ dt

di M dt

di M

Trang 13

30.47: a)  Lε/(di/dt)(30.0V)/(4.00 A/s)7.5H.

dt

di L ε

P R

H1050.3

H1050.3

c) ( ) (3.50 10 3H)(0.680A)( /0.0250s)sin( t/0.0250s )

dt

di L

V230.0)(

))s0180.0)(

s6.125((

sin)V299.0(s)0180.0(

))s6.125sin((

)V299.0()(

1 1

dt

di L dt

di L dt

di dt

di L dt

di

.11

and But

.So

1

2 1

eq 2

eq 1 2

L dt

di L

L dt

di L

L dt

di dt

di L

L dt

di dt

di dt

di

dt

di

Trang 14

30.50: a)       

2

0 encl

0

πr

i μ B i μ πr B I

i μ BdA

dr π

il μ

22

0 0

N

4)

ln(

22

12

0 2 0

π

li μ i a b π

μ l Li

0

πr

i μ B i μ r π B I

1)2(2

2 0

2 0 0 0

2

dr r

l i rdr

l r

i rdr

l u udV dU

2 0

2

π

l i μ r

dr π

l i μ dU

U

b a

U L Li

U     which is the same as in Problem 30.50

22

2 1 0 1 0 1

1 1

1 1

1

r π

A N μ r π

i N μ i

A N i

A N μ r

π

i N μ i

A N i

N

22

2 2 0 2 2 0 2

2 2

2 2

2 2 0

2 1 0

2 2 1 0

r π

A N μ r π

A N μ r

π

A N N μ

0 0 0

2 2 0

ε μ

Trang 15

30.54: a) 1860

A1045.6

0.12

f

b)

)/1(ln)

/1(ln)

1

( ( / )

f f

t L R f

i i

Rt L

i i L

Rt e

)s1025.7)(

H50.2(2

12

1

A474.0)1(00.8

V00.6)1(

2 2

1 1

e e

0

) 40 6 ( ) 20 3

e W dt

)1(20.3

)1()W50.4

(

2 1

0

) / (

R

L R

L dt

e U

R L

t L R

00.8

H50.2)W50.4

2)

W50.4

R

L e

R

L R L

(0.168) 0.236J

00.8

H50.2)W50.4

Trang 16

30.56: a) 5.00 10 J.

240

V60)H160.0(2

12

12

2 2

2 0

R

Ri dt

di iL dt

dU i L

R dt

di e

)V60( 2 2(240/0.160)(4.0010 .)

/ ( 2

P ( ) 2  2 2 ( / )

)240(2

)H160.0()V60(2

3 2

2 2

0

) / ( 2

which is the same as part (a)

30.57: Multiplying Eq (30.27) by i, yields:

.0

2

12

1R

2 2

2 2

P

C

q dt

d Li dt

d R i dt

dq C

q dt

di Li R i i C

q dt

di Li

i

That is, the rate of energy dissipation throughout the circuit must balance over all of the circuit elements

Trang 17

30.58: a) If

24

3cos8

32cos)

t Q q

22

12

2

12

1

2)2(

1)(

1

2 2 2

2

2 2

2 2

Q LC

Q L Li

U

LC

Q Q

Q LC q

Q LC

52

T t

π ωt

L LC

π

)2(

1so

C1000.6

F)1050.2)(

H0600.0(

1000.62

2

4

6 max

2 2

C

Q Li

c) (0.0600H)(1.55 10 A) 7.21 10 J

2

12

Q U

U U

U i

22

434

3J

1080.14

12

2

max

8 max

12

1

.C105.204

3

2 2

max

6

C

q Li

U

Q q

Trang 18

30.61: The energy density in the sunspot is /2 6.366 104J /m3.

0

B μ

u B

The total energy stored in the sunspot is U Bu B V

The mass of the material in the sunspot is mρV

;2

The volume divides out, and v 2u B /ρ 2104m/s

across the 150resistor

(b) From the graph, as t ,V R 25V,so there is no voltage drop across the inductor, so its internal resistance must be zero

)1

max

r t

t R  e  From the graph, when

τ t

V

V 0.63 max 16V, 0.5ms

H075.0)150()ms5.0(ms

5.0

L

(c) Scope across the inductor:

Trang 19

30.63: a) In the R-L circuit the voltage across the resistor starts at zero and increases to

the battery voltage The voltage across the solenoid (inductor) starts at the battery voltage and decreases to zero In the graph, the voltage drops, so the oscilloscope is across the solenoid

b) At t the current in the circuit approaches its final, constant value The voltage doesn’t go to zero because the solenoid has some resistance R The final voltage across L.the solenoid is IR where I is the final current in the circuit L,

c) The emf of the battery is the initial voltage across the inductor, 50 V Just after the switch is closed, the current is zero and there is no voltage drop across any of the

resistance in the circuit

d) As t,εIRIR L 0

V50

ε and from the graph I R L 15V (the final voltage across the inductor), so

A3.5/RV)35(andV

whenso,3.14,

10V,

50

)]

1(1

[so

),1

(,

tot

/ tot

/ tot

t L

V τ t R

R ε

e R

R ε V e

R

ε i iR ε

From the graph, V has this value when t = 3.0 ms (read approximately from the L

graph), so τL/Rtot 3.0ms.ThenL(3.0ms (14.3)43mH

Trang 20

30.64: (a) Initially the inductor blocks current through it, so the simplified equivalent circuit is

A333.0150

0,

A333.0

resistor)50

withparallelin

(inductorV

7.16

it

throughflows

currentno

since0

V16.7A)333.0(50(

V33.3A)

333.0(100(

2 3

1

4 2

A

V V

V5.11

A153.075

V5.11A,

385.0

V11.5V38.5V

50

0

;V5.38)A385.0(100(

A385.0130

V50/

3

2 1

4 3

2 1

V V

V V

R ε i

Trang 21

30.65: a) Just after the switch is closed the voltage V5 across the capacitor is zero and there

is also no current through the inductor, so V3 0.V2 V3 V4 V5, and since

2 4

0but

1 4 3

A

A;

800.0

4

A all other ammeters read zero

V0.40

1 

V and all other voltmeters read zero

b) After a long time the capacitor is fully charged so A4 0 The current through the inductor isn’t changing, so V2 0 The currents can be calculated from the equivalent circuit that replaces the inductor by a short-circuit.:

V0.24)0

50

(

A480.0readsA;

480.0)33.83(/V)0

The voltage across each parallel branch is 40.0V24.0V16.0V

V0.16,

V

.that

Note

zero.readsA

320.0readsmeans

V0.16

A160.0readsmeans

4 3

4 2

3

A A A

A A

V A

V0.16

)

d) At t = 0 and t,V2 0 As the current in this branch increases from zero to

0.160 A the voltage V reflects the rate of change of current.2

Trang 22

30.66: (a) Initially the capacitor behaves like a short circuit and the inductor like an open

circuit The simplified circuit becomes

A500.0150

V75

500.0

V0.50parallel)(in

V50.0A)50.0(100(,0

V25.0A)

50.0(50(

2 3

1 4

4 3

A

V V

V V

Ri V 2

(b) Long after S is closed, capacitor stops all current Circuit becomes

V0.75

3 

V and all other meters read zero

(c) q  CV (75nF)(75V)5630nC, long after S is closed

Trang 23

30.67: a) Just after the switch is closed there is no current through either inductor and

they act like breaks in the circuit The current is the same through the 40.0and15.0resistors and is equal to (25.0V) (40.015.0)0.455A.A1  A4 0.455A;

320.0)0.5(V)60.1(reads

all practical purposes

A00.225V

 R

i The upper limit of the energy that the capacitor can get is the energy stored in the inductor initially

C1090.0)F1020()H1010()A00.2(

2

12

3 6

3 max

0 max

2 0

2 max

Q U

(b) Eventually all the energy in the inductor is dissipated as heat in the resistor.

J100.2

)A00.2()H1010(2

12

1

2

2 3

2 0

Trang 24

30.69: a) At t 0,all the current passes through the resistor R so the voltage 1, v is the ab

total voltage of 60.0 V

b) Point a is at a higher potential than point b c) v cd 60.0Vsince there is no current through R2

d) Point c is at a higher potential than point b

e) After a long time, the switch is opened, and the inductor initially maintains the current of 2.40A

25.0

V0.60

h) Point d is at a higher potential than point c.

30.70: a) Switch is closed, then at some later time:

.V0.15)A/s0.50()H300.0(A/s

0

dt

di L v dt

di

cd

The top circuit loop: 60.0 1.50A

0.40

V0.60

V45.00

V0.15V

V0.60

Trang 25

30.71: a) Immediately after S is closed, 1 i0 0,v ac 0,andv cb 36.0V, since the inductor stops the current flow.

b) After a long time, i0  0.180A

15050

V0.36

,

.V0.27V00.9V0.36and

,V00.9)50()A18.0(

i e

V00.9(V0.36)

()

(

v

and1

)V00.9()(

)

(

) 50 ( )

50 ( 0

) s 50 ( 0

1 1

1

t s t

s cb

t ac

e e

R t i ε

t

e R

t i

Trang 26

30.72: a) Immediately after S is closed, the inductor maintains the current 2 i0.180Athrough R The Kirchoff’s Rules around the outside of the circuit yield:

.0and

V0.36)V50()A72.0(,A072.0Ω50

V36

0)50()150()18.0()150()18.0(V0.36

0

0 0

L

v v

i

i R

i iR ε

1t R

t L R

R

ε t i

Trang 27

30.73: a) Just after the switch is closed there is no current in the inductors There is no

current in the resistors so there is no voltage drop across either resistor A reads zero and

V reads 20.0 V

b) After a long time the currents are no longer changing, there is no voltage across the inductors, and the inductors can be replaced by short-circuits The circuit becomes equivalent to

A267.0)0.75()V0.20

a

I

The voltage between points a and b is zero, so the voltmeter reads zero.

c) Use the results of problem 30.49 to combine the inductor network into its

0V

0

20

V0.11)0.75)(

A147.0(

A147.0so,ms115.0,0.75,

0

20

ms144.0)(75.0mH)8.10(/with

),1

)(

(saysEq.(30.14)

L R R

τ t

V V

V

iR

V

i t

R V

ε

R L τ e

R ε i

Trang 28

30.74: (a) Steady state: 0.600A

125

V0

F6.14

F35

1F25

11

3.2410 4C

s1049.8)F106.14()H1020(2

2)2

(4

141

4 6

T t

Trang 29

30.75: a) Using Kirchhoff’s Rules: 0 ,and

1 1 1

ε i R

i

)

1(

2 2 2

2

R i R

i dt

ε i R

ε i

i     and the current drops off

d) A 40-W light bulb implies 360

W40

V)(120 2 2

and the current is to fall from 0.600A to 0.150 A in 0.0800 s,

then: ( ) ) ( 360 ) 22 0 H )( 0 0800 s )

2 (0.600A)e R1 R2 L t 0.150A (0.600A)e R2

.V7.12)2.21)(

A600.0(

0.21360

)00.4ln(

0800

0

H0.22

2 2

2 2

R R s

e) Before the switch is opened, 0.0354A

360

V7.12

Trang 30

30.76: Series: 2 eq

12

1 21

2 2

1 1

dt

di L dt

di M dt

di M dt

di L dt

di dt

di i

i

.and

with

,and

,)

2

(

So

21 12 2

1

1 21

2

2

eq

2 12

1 1

2 1

eq

eq 2

1

M M M dt

di dt

di M dt

di

L

dt

di L dt

di M dt

di L

M L

L

L

dt

di L dt

di M L

di B dt

(

)(

)(

)2

(

0)(

)(

)(

0)(

)()(

.using

0)(

)(

2 1

1 1

2 1

2 1

1

2 1

2 1

C L L M

L M B

C L M B L L M

B L M B M L C M L

B L M B C M L

B C A B

L M A M L

(

)2

()2

(

)(

2 1

1 2

1 2

1

L L M

L M L L M L

L M

C L M C

M

L M

L M M L

L

M

C L

M

L

eq 2

1

1 2

1

2

1

)2

(

)(

2

)(

2

C L C L L M

L L M

L

M L L L

2

2 1

2 2 1

Trang 31

30.77: a) Using Kirchhoff’s Rules on the top and bottom branches of the circuit:

)

1(

)0

0

)

1(0

) / 1 (

0

) / 1 ( 2 2

0 2

2

) 1 ( 2 2

2 2 2 2

2

2

) ( 1

1

1 1

1

2 2

2 1

t C R

t t C R t

t C R

t L R

e εC Ce

R R

ε t

d

i

q

e R

ε i C

i R dt

di C

ε i dt

0)1()

0

2 2 0

1 1

R

ε i

0.25

V0.48)

1()(:

2

2 1

ε e

R

ε i

1 ( 2

) ( 1

2

t C R t

L R t

C R t

L

R

R e

e R

e R i

Expanding the exponentials like ,wefind:

!321

3 2

2 1 1

2

12

1

C R

t RC

t R

R t

(

2

1 2

2 2

1 1

R

R t

O C R

R L

8

)F100.2)(

5000)(

H0

8

(

)1()1(

11

3 5

2

5

2 2

2 2

2 2

C LR C

R L

(:

s1057

1 1

A92.1()1

(A

960

1 1

t L R t

L

e R i

25

H0.8)5.0ln(

500.0

e R L t

Trang 32

30.78: a) Using Kirchoff’s Rules on the left and right branches:

2 1

1 2

dt

di L i i R dt

di L R i i

2 1

2 2

C

q i i R C

q R i i

b) Initially, with the switch just closed, 1 0, 2  andq2 0

R

ε i i

c) The substitution of the solutions into the circuit equations to show that they satisfy the equations is a somewhat tedious exercise in bookkeeping that is left to the reader

We will show that the initial conditions are satisfied:

.0)])0[cos(

1()0()]

cos(

)sin(

)2[(

)sin(

ωt ωt

ωRC e

ωR

ε q

t

βt βt

d) When does i first equal zero? 2 625rad/s

)2(

11

2 

RC LC

ω

.s10256.1rad/s625

785.00.785

1.00)arctan(

1.00

F)1000.2)(

400)(

rad/s625(22

)

tan(

01)tan(

)2()]

cos(

)sin(

)2([0

)

(

3 6

1 1

ωRC ωt

ωt ωRC

ωt ωt

ωRC e

R t

Trang 33

Ni μ A B A B

B

])

[(

.and

,where

,

])[(

2 0

2 0 0 0

0

0 0

0 0

2 0

D N Kμ L D

N μ L D

L L

L L d

d D

L L L D

d L D

d L L Kd d D N μ i

N L

f f

f f

Ngày đăng: 17/01/2014, 04:20

TỪ KHÓA LIÊN QUAN

w