l ll1ND TlNH KON TUM
~O G LAO D\ l C VA DAO T~O
[ DE CHiNH TH(J'c
l\tlf\ DE : 123
Mon: TOAN
L6'p: 12
DE KIEM TRA HQC Kil NAM HQC 2019-2020
Thfri gian : 90 phut ( kh6ng le d thai gian phat aJ)
(DJ c6 50 cdu, 05 trang)
D& :
C , flu 1 Kh6i tr\1 c6 b::111 kinh c%y brmg a va th~ tich bt'lng 3a3n thi c6 do dai ducmg sinh
bfmg
Cau 2 Cho ham s6 f (x) xl1c dinh tre11 t~p hgp IR va c6 dq.o ham la
f' ( x) = ( x - 1) ( 2x - 1 )2 ( 3 - x) Ham s6 f ( x) d6ng bi~n tren khoang nao sau day ?
A (2 ;3) B (0;3) C (-oo;l) D (3;+oo)
Cau 3 Ham s6 y = 3x c6 d<;to ham bing
A 3 x ln 3 B x 3 x - l y
C
ln3
Cau 4 Gia tfi l&n nh~t cua ham s6 y = -x4 +2x2 -3 tren doq.n (0;5] b~ng
Cau 5 Duang cong trong hinh ve be11 la df) thi ham s6 nao sau day?
Cau 6 Kh6i l~ p phuang ABCD A ' B ' C ' D ' c6AC ' = a./6 thi c6 th~ tich bkg
Cau 7 Hinh 11611 co du c mg ki11h day bing 2 a va chi6u cao b~11g a✓3 thi c6 d9 dai dua11g
s inh brtn g
Cflll 8 Kh6i chop c6 chi€u cao b~ng 3cm , di~n tich d{1y b~ ng l lcm2 thl c6 th~ tic.h b~ng
A 14cm3 B 33cnl C 8cm3 D llcm3
Ca u 9 C h o h a m sb f ( x ) xac dinh tr e n t~p hgp ~ v a c6 d6 thi nhu hlnh ve Phuong trinh
2 J ( x )- 3 = O c6 b ao nhicu nghi ¢rn duong? Y
C 4 D 3
Trang 2I
I
'
, " " I , , d ~ thi nhu hinh ve Ham so d a ch o
Can 10 H a m s6 Y = f ( x ) xac dtnh tren t~p hqp va co o
.r
n o-b h i c h b i~ n tr e n kh oa ng nao sau day?
C (O;+ oo ) D (-1;1)
Ca u 11 Cho ham s6 f ( X) xac dinh tren t~p IR va c6 bang bi Sn thien nhu hinh ve Gia trj
e ve o~i c ua h a m s6 b~ng
A l
C -2
X - OJ
' x
Cau 12 Ham s6 y = ( X -3) -fs d6ng bi~n tren khoang
A ( -oo; l) B ( 3 ; + oo ) C (- oo; +oo ) D (O ; + oo )
Cau 13 Kh 6 i drn e 6 th~ tich b i n g 4 n a313 thi c 6 duan g kinh bin g
Cau 14 D uo n g ti~.m c ~n n gang c1'.rn df) th i ham s6 y = 1 ·- " ~ - ; e6 ph uo n g trinh l a
., '\
.:-A x = 1 B y = 1 C .I v == 0 • D x =2
Cau 15 H a m s 6 y = -x4 + 2x2 - 5 e 6 b a o nhi e u di ~ m eve d:;ti ?
Cau 16 Kh 6 i h Q p chfr nh~t e6 b a kich thu6c l ~ n lugt b ~ n g 3 c m , 4c m , 7 c m thl c6 th ~ tich
b~ n g
A 8 4 c m3 B 12 cm3 C 2 8 c m3 D 2 lcm3•
Ca u 17 T~ p h c;r p n g i~ m e ua bfl t phu a n g t rlnh log( x- 2 ) < 1 l a
A ( oo; 3 ) B , (2; 1 ) C ( oo ; 1 ) D (12 ; +oo )
Ca u 18 C h o h i nh chop S A B C c6 SA vuong g6c v&i m~t ph f m g ( ABC ) , SA = a✓ 2 Ta m
giac ABC d~u c6 ec;1n h bfl n g a K h 6 i ch o p S.A B C e6 th ~ tich b ~ n g
Ca u 19 P h uan g tr1nh log(5x+3) = log(7x+5) c6 bao nhi e u n g hi ~ m ?
a\[6
D - -
12
Ca u 20 C h o Hin g tr l;l dung ABC.A I
BI
CI c6 AB 1 = 2a , tam giac ABC vuo g t i;i. A c6
AB = a , BC = a ✓ 3 Th ~ tich kh5i l ang t r~ 1 ABC A1B1C1 b i n g
A a
1
2
D a3 ✓6
6
'
Trang 3r C~'iu 21 Cho bi € Iog23= a,log35=b lhi Jog615 bling
Ca u 22 Cho a / :: 1 s6 th1:.rc dtmng va khac I Gia trj dia log
0 2 ( ¼) b~ng
A 6 B - 2
3
1
C -
6
a+ab
D
-a+l
3
D -
2 , , x2 - 3x + 2 A d , · A " d, ?
Ca u 23 f)6 thi ham s6 y = - - c6 bao nhieu U'ang t1~m qm ung •
· x2 -2x+ 1
C,1u 24 Kh6i lang trµ c6 di~n tfch day b~ng a2 va c6 the tich b~ng 3a3 • Chieu cao cua kh6i
1 an b a tru • oa ch o bi1ng
Cau 25 Bat phuang trinh 3x2- s < 81 co baa nhieu nghi~m nguyen ?
Ca u 26 D6 tl1i ham s6 y = x4 - 2x2 - 3 va du&ng th~ng y = -3 c6 bao nhieu diem chung ?
Cau 27 T?p xac djnh cua ham s6 y = ln(l-x) la
Cau 28 Cho s6 tµ- nhien n 2 2 va s6 th1,.rc m M~nh d~ nao sau day la m~nh d~ dung ?
A § = S "lfn _ B f/5;; = Y111
• C § = 5-;; D W = 5 -;;_
Cau 29 H am s<3 nao sau day d6ng biJn tr e n khoang ( O; +co) ?
A y=log2(x l) B y=ln(x+I) C y=log0 , 5x D y=log(l-x2
)
Cau 30 T6ng tAt ca cac nghi~m cua phuang trinh 4x - 6 2x + 8 = O bfing
Cau 31 Ham s6 nao sau day kh6ng c6 C\l'C tri ?
y = x - x y = x - x · - 1 C y = x - 2x D y = - -
x+2
~au 32 Hams ~ y = · /(x) ,c6 bang bien thien nhtr hinh ve S6 ducmg ti~m C?n dung va ti~m
qm ngang cua do thi ham s6 la
0
Trang 4-Cau 35 T~p xac c.1jnh cua ham s6 Y = ( x- 2f la
D (-co; -too)
A ( 2; +oo) B JR\ { 2} C (-oo; 2)
Cau 36 06 thi ham so y =
1 cat duang t ang Y = - ·
Di~n tich tam giac OAB (voi O la g6c t9a d9) b~ng
2
Cau 37 Cho ham s6 f (x) xac dinh tren t~p hgp JR va c6 d6 thi nhu hinh ve ben Ham s6
A (l;+oo) B (1;3)
C (- ro;3 ) D (-1;0)
X
f(x) = x2
Cau 40 Cho m~t cfiu ( S) c6 ban· kinh bing 3 va di qua cac di6m A , B , C , D sao cho
Cau 41 D6 thi ham s6 y = x3 -2x2 -4x + 11 c6 hai di€m cµc tri la A va B Khoang each tu
trung diJm I cua doc;tn th~ng AB dSn tq1c Oy b~ng
Cau 42 Cho hinh n6n dinh S c6 ban kinh day b~ng a va c6 di~n tich xung quanh b~ng 2na2• Kh6i cfiu ( S) tam O ngoc;ti ti~p hinh n6n nhu hinh ve ben thi c6 th~ tich b~ng
/ I \
C 32,ra3 .fj D rra3 -J3 LI - i -\
I -- - -- - +- - - - -\
Cau 43 Ham s6 y = x 2 - 3x - 2 ln ( x - 1) c6 bao nhieu di~m ci,rc td ?
Trang 5r can 44 Cho hlnh n6n dinh S , c6 ban kinh ,Jay bilng 3 vii chi~u cao biing 6./3, · Hinh 1~\1 • cti
hai dciy la hai dm'Jng tron tam O v,1 tam O' nhu hlnh ve ben Gia tri Ian nhat cua the
tich
kh8i tr1,1 b~ng
A 8Tt✓3
C ! r ✓3 _
27
Tt✓3
ll
8
D l2Tt✓ 2
ThJ tich kh6i tfr di~n b~ng
a3 ✓2
12
2a3✓ 2
a' ✓3
· , , ( ) ' a.fi ; , h kh; · h, S ABC b~
x- -2mx+4
Cau 49 Cho ham s6 f(x) xac djnl1 tren t~p hqp IR va harn s6 f'(x) c6 d6 thi nhu hinh ve
AC ' = 2a✓3 Tht lich k116i tCr di~n A 'C' BD bflng
A 2a 3 rrG 1" aJ JG
_ _ _ r-:1 r r _ _ _ _ _
va