Vi€t phuong trinh ti6p ruy6n voi.. duong thing iti qua hai.[r]
Trang 1Di, KIEM TRA CI{AT LIIQNG DAUNAM
NAM Hgc 201G2017 M0n thi: Toin 12 Thiri gian lim biri: 180 phit, khdng k6 thiri gian ph{t dii Ciu I (t,0 -li6m).
l Cho n ld sli tu nhi6n th6 a menC| = 45 Tinh gi6 t{ bi6u thric 1 - 24
2 Cho /(x) = sin2x+cosx fi* f'(r)
Ciu II (1,0 ili6m) Cho mm st5 71x; = mxt - 3x' + nu + l Tim m d6 /' (r) > 0, Vx e R.
Ciu III (r,0 ili6m) Cho him ,6 y =:l+ Vi€t phuong trinh ti6p ruy6n voi AO tH Ui.it ti6p tuyiin c6
r ^ i ,:,
ne so goc Dang - i
Ciiu IV (1,0 ili6m) Tinh gioi tt* ' x+2 hry*#
yt +5x_14
Ciu V (1,0 iti6m) Trong m4t ph'ing voi hQ tqa d0 Oxy, cho hai di6m A(1;2), Bt3;l) Vitit phuong trinh
duong thing iti qua hai <ti6m A, B Tim tqa d0 diilm M thuQc ttuong thdng AB sao cho OM = rE ysi O
li g6c tEa itQ.
Ciu YI (1,0 ili6rn);
luy€n vi6n cua m6i dQi cAn trintr tro ng tii m6t danh s,ich slip thu t.u 5 cAu thu rong sa t t cAu thri
dC d6 luAn luu 1l mdt Trong sd cic ciu thri tl6 c6 hai ciu thu Tin vi C6ng Tinh xric suit dA cAu
i- t .,
thiTin vi C6ng c6 m{t trong s6 5 ciu thri di ludn luu
Ctu VII (1,0 di6m) Trong lfi6ng gian cho hinh ldng tru ABCA'B'C' c6 d6y ld tam gi6c vu6ng d C, AC
: 4 AB = 2a Hinh chii5u cua A' tdn m4t phing (ABC) H trung <litim cua A3, goc gita ducrng theng A'C
vi mdt phing (ABC) bin€ 600 Tinh di€.n tich tam gi6c ABC, chiAu cao cua kh6i t4r vA cosin g6c gita
hai ttudng thingA'B vn AC
Cau 14II (1,0 ifi6d Trong m{t phing voi hQ tga tlQ Ory, cho tri gi6c ABCD nQi ti6p trong rtudng trdn, hai ttudng chdo vu6ng g6c voi nhau vd cit nhau tai E(l;-l) Hinh chiiiu cua E l6n duong thing CD h
Ciu IV (1,0 iti6n) Giai bdtphuong tdnh Jir-r-x' -Jzx+5+t <r-J3-r -.6+4
Cliu V (1,0 tliSm) Cho x,y,z lAba st5 duong thda miin x2 +y2 +22 +2xy =3(x + y+ z).
l Tim gind kin nhat cua t=x+y+z
2 nm giefrinh6 nhit cua biAuthric I =
" + y +, +
#.#
H&
Ha vdten thi sinh .56 b6o danh
SO GT} $ DT BAC NINH
TRI'ONG THPT HAN TIilTY$N