1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

GA TU CHON TOAN 10 CO BAN

29 8 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 29
Dung lượng 764,06 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

3-VÒ t duy: -RÌn luyÖn t duy logic 4-Về thái độ: -CÈn thËn chÝnh x¸c trong lËp luËn B-ChuÈn bÞ ph¬ng tiÖn d¹y häc: 1-VÒ thùc tiÔn: -Học sinh đã biết cách giải phơng trình,hệ phơng trình.[r]

Trang 1

Soạn: chủ đề : vectơ và các phép toán vectơ

A-Mục tiêu:

1-Về kiến thức:

-Vận dụng quy tắc cộng, trừ vào tính tổng các vectơ và chứng minh đẳngthức Biết sử tính chất trọng tâm tam giác áp dụng tính toạ độ trọng tâm Biết vậndụng tích vô hớng của hai vectơ vào chứng minh đẳng thức vectơ Biết vận dụngtích vô hớng của hai vectơ vào tính diện tích và xác định toạ độ điểm

Hoạt động của học sinh Hoạt động của giáo viên

Hoạt động 1: Cho bốn điểm bất kỳ M, N, P, Q

-Quy tắc hình bình hành:Nếu ABCD là hbh thì

(hiệu hai vectơ)

Hoạt động 2:Cho tam giác đều ABC nội tiếp

Trang 2

Vậy M là điểm đx với O qua AB và M thuộc (O)

hay M đx với C qua O

TT:N,P đối xứng với A,B qua O

Hoạt động của học sinh Hoạt động của giáo viên

Hoạt động 4:Cho tam giác ABC và

điểm G.Chứng minh rằng:

a/Nếu GA GB GC 0  

thì G là trọng tâm tam giác ABC

b/Nếu có một điểm O sao cho

a/gọi I là trung điểm BC ta có

Trang 3

 GA,GI 

ngợc hớng và GA=2GI

Vậy G là trọng tâm tam giác

Hoạt động 5:Trong mặt phẳng toạ độ,

cho ba điểm A(-4;1),B(2;4),C(2;-2)

a/Tìm toạ độ trọng tâm G của tam giác

ABC

b/Tìm toạ độ điểm D sao cho C là trọng

tâm của tam giác ABD

c/Tìm toạ độ điểm E sao cho ABCE là

-Điều kiện để ABCD là hình bình hành

có cặp cạnh đối song song và bằng nhau  AB DC

Hoạt động của học sinh Hoạt động của giáo viên

Hoạt động 6:Cho đoạn thẳng AB và

điểm I sao cho 2IA 3IB 0 

(1)

Trang 4

.b/ Với mọi điểm M ta có

(1) 2(IM MA) 3(IM MB) 0   

Hoạt động 7:Cho bốn điểm A,B,C,D

.CMR DA.BC DB.CA DC.AB 0  

     

Từ đó suy ra cách c/m định lý:”Ba đờng

cao của một tam giác đồng quy”

     

-Thực hiện phân tích các vectơ BC ,CA

Hoạt động của học sinh Hoạt động của giáo viên

Hoạt động 8:Trong mặt phẳng toạ

Trang 5

độ,cho tam giác ABC có các đỉnh

A(-4;1) B(2;4),C(2;-2)

a/Tính chu vi,đờng cao AA' và diện

tích tam giác đó

b/Tìm toạ độ trọng tâm G,trực tâm H

và tâm I của đờng tròn ngoại tiếp tam

giác ABC.Chứng tỏ ba điểm G,I,H

*Gọi I(x ; y )0 0 là tâm đờng tròn ngoại

tiếp tam giác ABC

G H A

Trang 6

-Chuẩn bị giáo án,SGK,thớc,máy tính

+Nếu

y0x

y x  4x 3 có đồ thị (Hình vẽ).Dựa vào đồ thị,hãy lập

bảng biến thiên của hàm số đó

Hoạt động của học sinh Hoạt động của giáo viên

-Để lập bảng biến thiên ta chú ý vào

dồ thị,nếu trong khoảng (a,b) đồ thị

đi lên thì hàm số đồng biến ,đồ thị

đi xuống thì hàm số nghịch biến

Hoạt động 3:Cho hàm số

2x 2y

Trang 7

c/Tìm các điểm trên đồ thị hàm số có tung độ bằng 1.

câu2: Tập xác định của hàm số : y=

1

x x

 là:

a.( ; 1 ) b.(1; +) c.(-; 1] d.(-;-1)

Câu 3:Tập nghiệm của bất phơng trình: x2- 4 > 0 là:

a.( 2;+) b.(-2;+) c.(-2; 2) d.(-;-2)( 2;+)

Hoạt động của học sinh Hoạt động của giáo viên

-Tập xác định:D=[-1;+)\{3}

-Điểm B(1;-1) thuộc đồ thị hàm số

-Các điểm trên đồ thị có tung độ bằng

1 là:M(7;1)

GV yêu cầu học sinh nhắc lại kn tập xác định

-Điểm M (x ; y )0 0 0 thuộc đồ thị hàm số

y=f(x) khi x0Dvà y0 f (x )0

-Các điểm trên đồ thị có tung độ bằng

m thì hoành độ là nghiệm pt: f(x)=m 4-Củng cố:Nhắc lại nội dung bài

Câu 1

1.Tìm các giá trị của m sao cho bất phơng trình sau nghiệm đúng với  x R

Y=f(x)=(m-1)x2- (m+1)x +m+1<0

2.Giải bất phơng trình trên khi m=0

5-Hớng dẫn về nhà:5,6,7,8-SNC

Soạn:

Tuần 6 chủ đề : hàm số và đồ thị

Tiết 2 -ổn định lớp Lớp Sĩ số Ngày giảng Học sinh vắng 10A7 10A8 2-Kiểm tra bài cũ: 3-Nội dung: Hoạt động 4:a/Lập bảng biến thiên và vẽ đồ thị của hàm số y3x 4 b/Từ đồ thị hàm số trong câu a/ suy ra đồ thị của hàm số y3x 4 -2 Hoạt động của học sinh Hoạt động của giáo viên -Bảng biến thiên: x   4 

 

0

-Đồ thị:

-Đối với hàm số y3x 4 ta chia

khoảng để khử dấu giá trị tuyệt đối -Tính giá trị của hàm số với x=0,

4

3 ,2

Trang 8

Để xác định hàm số y=ax+b ta thay toạ

độ hai điểm đó vào phơng trình y=ax+b

Trang 9

Lớp Sĩ số Ngày giảng Học sinh vắng

-Cho hàm số y=f(x) và y=g(x) hoành

độ giao điểm là nghiệm phơng trình f(x)=g(x)

-Tìm hoành độ thay vào hàm số tìm y

Hoạt động 8:Tìm hàm số bậc hai biết đồ thị nhận đờng thẳng

3x2



làm trục

đối xứng và đi qua hai điểm A(-3;2),B(1;6)

Hoạt động của học sinh Hoạt động của giáo viên

-Thay toạ độ các điểm A,B vào phơng trình đồ thị ta đợc hai phơng trình và phơng trình trục đối xứng

Hoạt động 9: Tìm hàm số bậc hai biết đồ thị có đỉnh là

Trang 10

Hoạt động của học sinh Hoạt động của giáo viên

a/Ta có   1 4m. -Để giải và biện luận phơng trình bậc

hai ta xét các trờng hợp

Trang 11

4

:Pt có hai nghiệm phân biệt 1,2

+Nếu a=0 thì pt có dạng bx+c=0+Nếu a 0 :xét dấu  b2  4ac0

  :phơng trình vô nghiệm.

0

  :phơng trình có nghiệm kép

bx

2a

.-Kết luận:

Hoạt động 2:Tìm giá trị của tham số a để phơng trình sau vô nghiệm:

Trang 12

Hoạt động 4:Cho phơng trình:3x2  5x 1 0  .Biết rằng phơng trình có hai

nghiệm dơng x1,x2,tính giá trị các biểu thức.

-Biến đổi các biểu thức đa về tổng, tích các nghiệm

Hoạt động 5:Cho phơng trình bậc hai:x2 2mx 3 0  .Tìm m để pt có hai

nghiệm x1,x2sao cho biểu thức sau đạt giá trị nhỏ nhất: 2 2

-Tính giá trị biểu thức theo m

-Tìm giá trị nhỏ nhất của biểu thức

Hoạt động 6:Củng cố thông qua bài tập:

Cho (P):

y x  2(m 7)x m  14m.CMR (P) luôn cắt trục hoành tại hai

điểm phân biệt A và B và khoảng cách giữa A và B luôn không đổi

4-Củng cố:Nhắc lại nội dung bài

Trang 13

(tm)-Nếu m3 thì (1) có nghiệm khi (2)

-Để giải phơng trình ta đặt ẩn phụ rồi

đa về pt bậc hai để giải

đặt ẩn phụ

-GV có thể yêu cầu học sinh trình bày theo hai cách

Trang 14

-Thay t vừa tìm đợc vào tìm x.

4-Củng cố:Nhắc lại nội dung bài

x

DxD

;

x

DxD

;+Nếu D=0 thì Dx 0hoặc Dy 0

Hoạt động của học sinh Hoạt động của giáo viên

-Nghe hiểu nhiệm vụ

-Trình bày lời giải

-chỉnh sửa hoàn thiện khớp với đáp án

-Để giải phơng trình trên ta có thể dùngcách tính định thức:

Trang 15

Hoạt động của học sinh Hoạt động của giáo viên

Từ (1) ta có y=2x+1 thay vào pt (2) ta

ẩn của phơng trình bậc nhất và thế vào phơng trình bậc hai

Hoạt động của học sinh Hoạt động của giáo viên

-Nhân (3) với -2 rồi cộng với (4) ta

đ-1x2

Trang 16

Hoạt động 13:Củng cố toàn bài.

4-Củng cố:Nhắc lại nội dung bài

-Cẩn thận chính xác trong lập luận,biên đổi chính xác

B-Chuẩn bị phơng tiện dạy học:

Trang 17

Hoạt động của học sinh Hoạt động của giáo viên

Hoạt động 1:Cho tam giác có độ dài

-Học sinh thực hiện giải bài tập

-Chỉnh sửa hoàn thiện

Hoạt động 2:Tính các cạnh còn lại của

tam giác ABC trong các trờng hợp sau

-Học sinh thực hiện giải bài tập

-Chỉnh sửa hoàn thiện

a/c8,47b/b4,4c/a 11,63Hoạt động 3:Tính các cạnh và góc còn

lại của tam giác ABC trong các trờng

-Học sinh thực hiện giải bài tập

-Chỉnh sửa hoàn thiện

4-Củng cố: Biết vận dụng định lý côsin, định lý sin vào tính độ dài các cạnh,góc.5-Hớng dẫn về nhà:

Trang 18

2-Kiểm tra bài cũ:(Thực hiện theo các hoạt động)

3-Nội dung:

Hoạt động của học sinh Hoạt động của giáo viên

Hoạt động 4:Cho tam giác ABC có

BC=24,CA=26 và trung tuyến

AM=16.Tính diện tích và góc B của tam

Hoạt động 5:Chứng minh rằng khoảng

cách d từ trọng tâm G của tam giác ABC

đến tâm đờng tròn ngoại thoả mãn hệ

C B

A

-Gv vẽ hình và gợi ý học sinh cách giải bài tập trên

-Học sinh thực hiện giải bài tập.-Chỉnh sửa hoàn thiện

Hoạt động 6:Chứng minh rằng trong mọi

tam giác ABC ta luôn có:

a/a=b.cosC+c.cosB

b/sin(B+C)=sinB.cosC+cosB.sinC

a/Ta có a  b' c'b.cosC c.cosB

b/Theo câu a/ ta có a=b.cosC+c.cosB

-Học sinh thực hiện giải bài tập.-Chỉnh sửa hoàn thiện

4-Củng cố:Biết vận dụng định lý sin,công thức trung tuyến vào chứng minh các

đẳng thức trong tam giác

Trang 19

5-Hớng dẫn về nhà:Bài tập 8,9,10.

Tiết 3Soạn:

Tuần: 14 chủ đề : Giải tam giác

-Vẽ hình

-Học sinh thực hiện giải bài tập

Hoạt động 8: Cho tam giác ABC có

thẳng đi qua B và tâm O của đờng tròn

ngoại tiếp tam giác cắt cạnh AC tại D

Tính cạnh BD và diện tích của tam giác

Trang 20

2-Kiểm tra bài cũ:

Tam giác ABC có b+c=2a.Chứng minh

-Gọi hai học sinh lên bảng

-Kiểm tra bài tập học sinh khác

3-Nội dung:

Hoạt động của học sinh Hoạt động của giáo viên

Hoạt động 10:Cho tam giác ABC có

A60 ,b20,c35

a/Tính chiều cao ha.

b/Tính nội tiếp,ngoại tiếp tam giác

-Học sinh trình bày lời giải

Hoạt động 11:Cho tam giác ABC có

hay b2  c2 2a(b cosC c cos B)

-HD học sinh áp dụng định lý cosin chứng minh định lý

-Học sinh trình bày lời giải

4-Củng cố: nêu lại nội dung bài học

2-Kỹ năng:

Trang 21

-Vận dụng bất đẳng thức cơ bản vào chứng minh bất đẳng thức và tìm giá trị lớn nhất,nhỏ nhất.

Hoạt động của học sinh Hoạt động của giáo viên

-Đa về các biểu thức đúng -Gọi 2 học sinh trình bày lời giải

-Giáo viên nhận xét và kết luận3-Nội dung:

Hoạt động 1:Với mọi a,bR,chứng minh rằng a  b  a b a  b và

Hoạt động 2:Với mọi a,b,x,y thuộc R,CMR

Trang 22

Ta lại có P(0)=0.VậyGTNN của P(x)=0

*Theo bất đẳng thức côsi ta có

Vậy giá trị LN P(x) là

127

Hoạt đông 4:Cho

x y z 1.Tìm giá trị lớn nhất,nhỏ nhất của S=xy+yz+zx

Hoạt động của học sinh Hoạt động của giáo viên

Trang 23

-Cẩn thận chính xác trong lập luận,biên đổi chính xác.

B-Chuẩn bị phơng tiện dạy học:

Trang 24

Hoạt động 2:Giải các bất phơng trình sau.

P(x)

0Q(x)  ta lập

bảng xét dấu của phân thức

P(x)Q(x).

-Gọi học sinh lên bảng giải bpt-Chỉnh sửa hoàn thiện (nếu có)

4-Củng cố:Nắm đợc cách giải biện luận bpt bậc nhất,bất pt chứa ẩn ở mẫu.5-Hớng dẫn về nhà:

2-Kiểm tra bài cũ:

Hoạt động 3:Giải hệ bất phơng trình sau:

Hoạt động của học sinh Hoạt động của giáo viên

Để bpt nghiệm đúng với mọi xR: -Dựa vào định lý về dấu của tam thức

Trang 25

Hoạt động 5:Tìm các giá trị của m để bất phơng trình sau vô nghiệm:

Hoạt động 6:Tìm m để phơng trình sau có hai nghiệm dơng phân biệt:

2-Kiểm tra bài cũ:

Hoạt động 7: Tìm các giá trị của m để bất phơng trình sau vô nghiệm:

a/5x2  xm0 b/mx2  10x 5 0

Hoạt động của học sinh Hoạt động của giáo viên

-Gọi 2 học sinh trình bày lời giải

Trang 26

Hoạt động 8:Giải các phơng trình sau:

-Để giải phơng trình chứa ẩn trong dấu giá trị tuyệt đối,ta sử dụng định nghĩa

để khử dấu giá trị tuyệt đối

-Học sinh thực hiện trình bày lời giải.-Chỉnh sửa hoàn thiện nếu có

Hoạt động 9: Giải các bất phơng trình sau:

2-Kiểm tra bài cũ:

Hoạt động 10: giải các bất phơng trình sau:

Trang 27

Hoạt động của học sinh Hoạt động của giáo viên

Hoạt động 12: Giải các bất phơng trình sau:

-Học sinh thực hiện trình bày lời giải.-Chỉnh sửa hoàn thiện nếu có

-Từ bài tập trên rút ra cách biến đổi

-Cẩn thận chính xác trong lập luận,biên đổi chính xác

B-Chuẩn bị phơng tiện dạy học:

1-Về thực tiễn:

Trang 28

Hoạt động của học sinh Hoạt động của giáo viên

Hoạt động 1:Viết phơng trình tổng quát

của đờng thẳng d cách đều hai đờng

Hoạt động 3:Cho đờng thẳng d có

a/Viết phơng trình đờng thẳng  đi

qua M(2;4) và vuông góc với d.Tìm

-Vẽ hình M

H d

M '

-Học sinh trình bày lới giải

Trang 29

giao điểm H của  và d.

b/Tìm điểm M 'đối xứng với M qua d

-Chỉnh sửa nếu có

4-Củng cố: nêu nội dung toàn bài

5-Hớng dẫn về nhà: làm các bài tập cho chép

Ngày đăng: 15/09/2021, 13:49

w