Viết phương trình tiếp tuyến của đồ thị C , biết tiếp tuyến song song với đường phân giác của góc phần tư thứ nhất.. Khào sát và vẽ đồ thị C của hàm số.[r]
Trang 1ĐỀ CƯƠNG ÔN TẬP CHƯƠNG I GIẢI TÍCH 12
1 HÀM SỐ ĐỒNG BIẾN, NGHỊCH BIẾN Bài 1: Tìm các khoảng đồng biến nghịch biến của các hàm số
a)
1
b)
3 2
2 3 3
c)
3 2
3
x
d) yx42x2 3 e)
3 1
1 2
x
y
x
2 1
y x
g) y2x 1 3x 5 h) y 25 x2 k) y x2 7x12 l) y x 1 4 x2 m) y 2 10x 8 2 x2 n) y x 3(1 x)2
Bài 2: Tìm các giá trị của tham số m để
a)
1
( 6) 2 1 3
đồng biến trên R
b)
3
2
3
x
nghịch biến trên R
c)
3 2 ( 1)
(3 2) 3 3
nghịch biến trên tập xác định của nó
d)
1
mx y
x m
đồng biến trên từng khoảng xác định của nó
Bài 3 : Chứng minh các bất đẳng thức :
a)
sinx ; x 0;
2
3 sin ; 0 3!
x
2 CỰC TRỊ CỦA HÀM SỐ Bài 4: Tìm cực trị của các hàm số
a) y = 2x3 + 3x2 – 36x – 10 b) y = −
1
3x
3+4 x
c) y =
1
2x
4− 4 x2−1
d) y =
4 2 1
4x x
e) y = x
2
−2 x+2
x −1 f)
3 1
1 2
x y
x
g) y2x 1 3x 5 h) 2
25
l) y x 1 4 x2 m) y 2 10x 8 2 x2
Bài 5:
a) Xác định m để hàm số
1
3
đạt cực đại tại điểm x = 1
b) Xác định m để hàm số y x 3 2x2mx1 đạt cực tiểu tại x = 1
c) Xác định m để hàm số y x 4 2mx2 nhận điểm x = 1 làm điểm cực tiểu
d) Tìm tất cả các số thực m để hàm số y x 3 (m1)x23mx1có điểm cực đại, điểm cực tiểu Xác định m để điểm I(0;1) là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số e) Chứng minh rằng hàm số
2 2 1
y
x m
luôn có cực đại và cực tiểu
f) Cho hàm số
2 2 (1) 1
y x
1 Tính khoảng cách giữa hai điểm cực trị của đồ thị hàm số (1)
2 Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số (1)
Trang 23 GIÁ TRỊ LỚN NHẤT GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ Bài 6: Tìm GTLN, GTNN cảu các hàm số
a) y = x3 – 3x2 – 9x + 35 trên đoạn [-4 ; 4] b) y = x4 – 2x2 + 3 trên đoạn [-3 ; 2]
c) y = x +
1
x trên khoảng (0 ; + ∞¿ d) y =
2 1
3 2
x x
trên đoạn [2 ; 5]
e) y = 2 x2+5 x +4
x+2 trên đoạn [-3 ; 3] f) y = √6 −3 x trên đoạn [-1 ; 1]
g) y = √100− x2 trên đoạn [-8 ; 6] h) y = (x + 2) √1− x2 k) y = x+1
√x2+1 trên đoạn [1 ; 2] l) y = x + √4 − x2 m) y =
√3+x+√6 − x
n) y = sinx 2 cosx p) y = sin4x – 4sin2x + 5 q) y = x – sin2x trên
[− π
2;π]
u)y x 4 x1 trên đoạn [1 ; 10] v)y = x2 5 x trên [-4 ; 5]
4 KHẢO SÁT HÀM SỐ VÀ CÁC BÀI TOÁN LIÊN QUAN
1) HÀM SỐ BẬC BA
Bài 1 Cho hàm số yx33x2 4 (C)
1.Khảo sát và vẽ đồ thị (C) của hàm số
2 Dựa vào đồ thị (C) , biện luận theo m số nghiệm thực của phương x3 3x2m0
3 Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ là
1 2
x
4 Viết phương trình tiếp tuyến của (C) , biết hệ số góc của tiếp tuyến
9 4
k
5 Viết phương trình tiếp tuyến với (C) , biết tiếp tuyến song song với đường thẳng
d :y3x2011
Bài 2 Cho hàm số y4x3 3x 1 (C)
1 Khảo sát và vẽ đồ thị (C) của hàm số
2 Dựa vào đồ thị (C) biện luận theo m số nghiệm thực phương trình :
4
3 Viết phương trình tiếp tuyến của (C), biết tiếp tuyến song song với đường thẳng
1
15
9
4 Viết phương trình tiếp tuyến của (C), biết tiếp tuyến vuông góc với đường thẳng
2 : 2011
72
x
5 Viết phương trình tiếp tuyến của (C) , biết tiếp tuyến đi qua điểm M1, 4
Bài 3 Cho hàm số y=2x3- 3x2- 1 (C)
1 Khảo sát và vẽ đồ thị (C) của hàm số
2 Viết phương trình tiếp tuyến của (C), biết tiếp tuyến vuông góc với đường thẳng
1
2
3
3 Tìm m để đường thẳng d2 :y mx 1
cắt đồ thị (C) tại 3 điểm phân biệt
Trang 34 Viết phương trình đường thẳng đi qua hai điểm cực đại và cực tiểu của đồ thị (C).
5 Viết phương trình đường thẳng đi qua M2;3 và tiếp xúc với đồ thị (C).
Bài 4 Cho hàm số y= - 2x3+3x2- 1 (C)
1 Khảo sát và vẽ đồ thị (C) của hàm số
2 Tìm m để đường thẳng d2 :y mx 1
cắt đồ thị (C) tại một điểm duy nhất
3 Tìm m để đường thẳng d3 :y m x 1
cắt đồ thị (C) tại 3 điểm phân biệt
Bài 5 Cho hàm số
3 2
3
x
(C)
1 Khảo sát và vẽ đồ thị (C) của hàm số
2 Dựa vào đồ thị (C) biện luận theo m số nghiệm thực của phương trình :
3 Viết phương trình tiếp tuyến của (C) tại điểm có hệ số góc tiếp tuyến nhỏ nhất
Bài 6 Cho hàm số y x33m1 x2 2
1 Khảo sát và vẽ đồ thị (C) của hàm số khi m 0
2 Biện luận theo k số nghiệm thực của phương trình : x3 3x2 2k0
3 Tìm m để hàm số có cực đại và cực tiểu.Viết phương trình đường thẳng đi qua hai điểm cực đại
và cực tiểu
2) HÀM SỐ BẬC BỐN TRÙNG PHƯƠNG
Bài 1 Cho hàm số yx4 2x2 (C)
1 Khảo sát và vẽ đồ thị (C) của hàm số
2 Biện luận theo m số nghiệm thực của phương trình x4 2x2 m
3 Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x 2
4 Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có tung độ y 8
5 Viết phương trình tiếp tuyến của đồ thị (C) , biết hệ số góc của tiếp tuyến bằng 24
Bài 2 Cho hàm số y x42x2 1 (C)
1 Khảo sát và vẽ đồ thị (C) của hàm số
2 Biện luận theo m số nghiệm thực của phương trình x4 2x2 m0
3 Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x 2
4 Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có tung độ y 9
Bài 3 Cho hàm số yx4x21 (C)
1 Khảo sát và vẽ đồ thị (C) của hàm số
2 Viết phương trình tiếp tuyến của đồ thị (C) , biết tiếp tuyến song song với đường thẳng
d1 :y6x2010
3 Viết phương trình tiếp tuyến của đồ thị (C) , biết tiếp tuyến vuông góc với đường thẳng
: 6 2011 0
Bài 4 Cho hàm số yx4 x21 (C)
1 Khảo sát và vẽ đồ thị (C) của hàm số
2 Tìm m để phương trình x4x2 3 2m0 có 2 nghiệm thực phân biệt
3 Tìm các điểm trên trục tung sao cho từ đó kẻ được 3 tiếp tuyến đến (C)
Trang 4Bài 5 Cho hàm số
1 2 4
(C)
1 Khảo sát và vẽ đồ thị (C) của hàm số
2 Viết phương trình parabol đi qua các điểm cực trị của đồ thị (C)
Bài 6 Cho hàm số yx4 2x23 (C)
1 Khảo sát và vẽ đồ thị (C) của hàm số
2 Viết phương trình tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục tung
3 Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có tung độ bằng 3
Bài 7 Cho hà m số
4
2 5 3
x
(1)
1 Khảo sát và vẽ đồ thị (C) của hàm số khi k 1
2 Biện luận theo k số nghiệm thực của phương trình x4 6x2k0
3 Dựa vào đồ thị (C) , hãy giải bất phương trình
4 2
2
x x
4 Tìm m để hàm số (1) đạt cực tiểu tại x 3
5 Tìm m để hàm số (1) có 3 cực trị
Bài 8 Cho hàm số yx42mx2m2 m
1 Khảo sát và vẽ đồ thị (C) của hàm số khi m 2
2 Tìm m để hàm số đạt cực tiểu tại x 1
3 Tìm m để hàm số có 1 cực trị
4 Tìm m để hàm số (1) có 3 điểm cực trị và 3 điểm cực trị đó lập thành một tam giác có một góc
120 0
3) HÀM SỐ PHÂN THỨC
Bài 1 Cho hàm số
2 1 1
x y x
(C)
1 Khào sát và vẽ đồ thị (C) của hàm số
2 Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ
1 2
x
3 Viết phương trình tiếp tuyến của (C) tại điểm có tung độ
1 2
y
4 Viết phương trình tiếp tuyến của (C) , biết hệ số góc của tiếp tuyến k 3
5 Tìm m để đường thẳng : 5 2
3
cắt (C) tại 2 điểm phân biệt
Bài 2 Cho hàm số
1 1
x y x
(C)
1 Khào sát và vẽ đồ thị (C) của hàm số
2 Viết phương trình tiếp tuyến của đồ thị (C) , biết tiếp tuyến song song với đườn thẳng
1
9
2
3 Viết phương trình tiếp tuyến của đồ thị (C) , biết tiếp tuyến vuông góc với đường thẳng
2
1
8
4 Tìm m để đường thẳng 3
1
3
cắt đồ thị (C) tại 2 điểm phân biệt có hoành độ
âm
Trang 5Bài 3 Cho hàm số
1 1
x y x
(C)
1 Khào sát và vẽ đồ thị (C) của hàm số
2 Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) và trục hoành
3 Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) và trục tung
4 Viết phương trình tiếp tuyến của đồ thị (C) , biết tiếp tuyến vuông góc với đường thẳng
1
:
5 Tìm m để đường thẳng 2
1
3
cắt đồ thị (C) tại 2 điểm phân biệt có hoành độ dương
Bài 4 Cho hàm số
3 1 1
x y
x
(C)
1 Khảo sát và vẽ đồ thị (C) của hàm số
2 Tìm m để đường thẳng d1 :y mx 2m 7
cắt đồ thị (C) tại hai điểm A, B phân biệt Tìm
tập hợp trung điểm I của đoạn thẳng AB
3 Tìm những điểm trên đồ thị (C) có toạ độ với hoành độ và tung độ đều là số nguyên
4 Viết phương trình tiếp tuyến của đồ thị (C) , biết tiếp tuyến song song với đường phân giác của góc phần tư thứ nhất
Bài 5 Cho hàm số
3
2 1
x y
x
(C)
1 Khào sát và vẽ đồ thị (C) của hàm số
2 Viết phương trình tiếp tuyến của đồ thị (C) , biết tiếp tuyến song song với đường phân giác của góc phần tư thứ hai
3 Chứng minh rằng tích các khoảng cách từ một điểm bất kỳ trên (C) đến hai đường tiệm cận của (C) là một hằng số
Bài 6: Cho hàm số
2 1
2 1
x y x
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2 Xác định tọa độ giao điểm của (C) với đường thẳng d: y = x + 2
Bài 7: Cho hàm số
3 2 1
x y
x
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2 Tìm tất cả các giá trị của tham số m để đường thẳng y = mx + 2 cắt đồ thị (C) của hàn số đã cho tại hai điểm phân biệt
Bài 8: : Cho hàm số
2 1
x y x
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2 Chứng minh rằng với mọi giá trị m đường thẳng (d): y = -x + m luôn cắt (C) tại hai điểm phân biệt
……HẾT……