Trong các dây của một đường trịn, dây lớn nhất là đường kính.. Đường kính vuơng gĩc với dây thì đi qua trung điểm của dây.. Biết rằng chiếc xuồng bị dòng nước đẩy lệch đi một góc bằng 18
Trang 1Trường THCS Bình Thành Năm học 2011 - 2012
ĐỀ CƯƠNG ƠN TẬP THI HỌC KỲ I – TỐN 9
Gv: Lê Cơng Thuận
A LÝ THUYẾT:
I.HÌNH HỌC: Chương I: Hệ thức lượng trong tam giác vuơng
1 Các hệ thức về cạnh và đường cao trong tam giác vuơng
Cho tam giác ABC vuơng tại A, đường cao AH Ta cĩ :
2 b2 = a.b’; c2 = a.c’
4 ah = bc
5 12 = 12 + 12
(Ta cịn cĩ: ABC vuơng tại A AB2 + AC2 = BC2)
6 Định nghĩa các tỉ số lượng giác của gĩc nhọn
sin AB
BC
cạnh đối cạnh huyền ; cos = AC
BC
cạnh kề cạnh huyền ; tan = AB
AC
cạnh đối cạnh kề ; cot = AC
AB
cạnh kề cạnh đối
Tỷ số lượng giác của gĩc nhọn:
Với hai gĩc và biết + = 900, ta cĩ :
sin = cos , cos = sin , tan = cot , cot = tan
Cho gĩc nhọn Ta cĩ:
0 < sin < 1; 0 < cos < 1; sin2 + cos2 = 1;
tan = sin
cos
; cot = cos
sin
; tan Cot = 1
1 < 2 thì sin 1 < sin 2, tan 1 < tan 2 (cos và cot ngược lại)
Các hệ thức về cạnh và gĩc trong tam giác vuơng
Chương II: Đường trịn
Các định lý cơ bản
1 Trong các dây của một đường trịn, dây lớn nhất là đường kính
2 Đường kính vuơng gĩc với dây thì đi qua trung điểm của dây Chú ý phần đảo: “…đi qua trung
điểm dây khơng đi qua tâm…”
3 Phát biểu các định lý về quan hệ giữa dây và khoảng cách từ tâm đến dây a AB = MN OH = OE; b CD > AB OK < OH với OH, OE, OK là khoảng cách từ tâm đến dây AB, MN, CD
4 Phát biểu định lý về:
Tính chất tiếp tuyến: AB là tiếp tuyến AB OB Tính chất hai tiếp tuyến cắt nhau: + AB = AC;
1 2
A A
1 2
O O
Dấu hiệu nhận biết tiếp tuyến AB OB tại B AB là tiếp tuyến
5 Vị trí tương đối củađđườngđthẳng và đường trịn: Đường thẳng a và
đường trịn (O; R), khoảng cách từ O đến đường thẳng a là d
Vị trí tương đối Số điểm
chung
Hệ thức giữa d và
R
Ghi chú
O 2 1 2
1
C
B A
a
h
B A
cạnh huyền
C B
A
Trang 2Trường THCS Bình Thành Năm học 2011 - 2012
chung gọi là tiếp điểm
8 Vị trí tương đối của hai đường tròn: Hai đường tròn (O; R) và (O’; r), R > r, OO’ = d
Vị trí tương đối Số điểm
chung
Hệ thức giữa d
và R; r
Ghi chú
trung trực của dây chung Tiếp xúc:* Ngoài
* Trong
d = R – r
Đường nối tâm đi qua tiếp điểm
Không giao nhau:* Ngoài
nhau
* (O) đựng (O’)
* (O);(O’) đồng tâm
d > R – r
d = 0
II.Đại số:Chương I: Căn bậc hai Căn bậc ba
+ Điều kiện tồn tại: Acó nghĩa khi A ≥ 0
+ Hằng đẳng thức A2 A =
A khi A 0 -A khi A< 0
+ Các phép tính và các phép biến đổi đơn giản căn thức bậc hai
+ Căn bậc ba: Định nghĩa, tính chất như sgk
Chương II: Hàm số bậc nhất
*Tính chất: Hàm số y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0
* Đồ thị là đường thẳng đi qua 2 điểm có tọa độ P(0; b) và ( b; 0)
a
Q
* Khi b = 0, đồ thị hàm số y = ax là đường thẳng đi qua 2 điểm O(0; 0) và A(1; a)
* Vị trí tương đối của hai đường thẳng: Hai đường thẳng (d1): y = ax + b và (d2): y = a’x + b’ (d1) // (d2) a = a và b ≠ b’ *(d1) cắt (d2) a ≠ a’, nếu có thêm b = b’ thì (d1) cắt (d2) tại điểm trên trục Oy có tung độ bằng b *(d1) (d2) a = a’ và b = b’
Chương III:Hệ hai phương trình bậc nhất hai ẩn
Phương trình bậc nhất hai ẩn:
* Hệ pt : ax
by c
a x b y c
có:
- Một nghiệm duy nhất khi:
a b
a b
- Có vô số nghiệm:
a b c
- Vô nghiệm:
a b c
* Giải hệ pt bằng phương pháp thế :
B1: Rút x theo y hoặc y theo x B2: Thay vào pt thứ 2 và giải pt bậc nhất 1 ẩn, tìm được x hoặc y B3: Thay x hoặc y ta tìm được y hoặc x
* Giải hệ phương trình bằng phương pháp cộng: Khi có hai hệ số của ẩn x hoặc y bằng nhau (đối nhau) thì trừ từng vế 2 pt (cộng từng vế 2 pt).(BGH yêu cầu dạy đến hết tuần 19)
B BÀI TẬP:
I ĐẠI SỐ:
1 Rút gọn biểu thức:
Trang 3Trường THCS Bình Thành Năm học 2011 - 2012
d 1 2 3 1 2 3
e 2 184 32 723 8 f 3 52 5
g
11
2 3 1
h 2 2x3 8x5 32x ( x 0 )
2 Cho hàm số y = 1 1
2x
a Hàm số trên đông biến hay nghịch biến ? Vì sao ?
b Vẽ đồ thị hàm số trên
c Gọi A, B lần lượt là giao điểm của đồ thị hàm số với trục tung và trục hoành Tính chu vi và diện tích OAB (O là gốc toạ độ và đơn vị đo trên các trục là centimet )
d Tính sinABO ( làm tròn đến chữ số thập phân thứ 2 )
3 Cho hàm số y = ax + b
a Xác định a, b biết đồ thị hàm số y = ax + b cắt trục tung tại điểm có tung độ bằng 1 và đi qua
điểm M(2;-1)
b Biết đường thẳng y = ax + b song song với đường thẳng y = 2x - 5 và cắt trục hoành tại điểm có
hoành độ bằng -3
4 a Vẽ trên cùng một mặt phẳng toạ độ đồ thị hai hàm số sau:
y = -x + 2 và y =
1
2x + 2
b Gọi giao điểm của đường thẳng y = -x + 2 và y =
1
2x + 2 với trục hoành lần lượt là A, B và giao điểm của hai đường thẳng đó là C tính chu vi và diện tích của tam giác ABC
5 Tìm toạ độ giao điểm của hai đường thẳng y = 2x + 1 và y = -4x + 3
2
x b 3 x 1 1x 0
7 Giải hệ phương trình sau bằng phương pháp thế: . 3 2 4
x y a
x y
x y b
x y
8 Giải hệ phương trình sau bằng phương pháp cộng:
.
x y
a
x y
2
.
4
b
(yêu cầu của BGH)
II HÌNH HỌC:
1.Tìm độ dài cạnh x, y trong các tam giác vuông sau:
2 Một chiếc xuồng máy với vận tốc 8km/h vượt qua một khúc sơng, nước chảy mạnh mất 6 phút Biết rằng chiếc xuồng bị dòng nước đẩy lệch đi một góc bằng 180 ( so với hướng đi vuơng góc với hai
bờ ).Tính chiều rộng của khúc sơng ( kết quả làm tròn đến mét )
y x
6 2
y x
4
Trang 4Trường THCS Bình Thành Năm học 2011 - 2012
3 Một chiếc máy bay bắt đầu bay lên khỏi mặt đất với tốc độ 400km/h Đường bay của nó tạo với phương nằm ngang một góc 300 Hỏi sau bao nhiêu phút thì máy bay đạt được độ cao 100km so với mặt đất ?
4 Tính: a Sin2150 + Sin2500 + Sin2750 + Sin2400
b Cho tam giác ABC vuông tại A Biết:
c Sắp xếp theo thứ tự tăng dần: tg700; cotg600; cotg650; tg500; sin250
5 Cho hai đường tròn (O;R) và (O';R') cắt nhau tại hai điểm A và B Đường thẳng OA là tiếp tuyến của đường tròn (O';R') Biết R = 12cm, R' = 5cm
a Chứng minh O'A là tiếp tuyến của (O;R)
b Tính độ dài OO'
c Tính độ dài AB
6 Cho tam giác ABC cân tại A, các đường cao AD và BE cắt nhau tại H Gọi O là tâm đường tròn ngoại tiếp tam giác AHE
a Chứng minh: ED = 1
2BC
b Chứng minh: DE là tiếp tuyến của đường tròn tâm O
c Tính độ dài DE, biết DH = 2cm, HA = 6cm
7 Cho (O;R) đường kính AB Trên OA lấy điểm E Gọi I là trung điểm của AE Qua I vẽ dây cung
CD AB Vẽ (O') đường kính EB
a Chứng minh: (O) và (O') tiếp xúc tại B
b Tứ giác ACED là hình gì ? Vì sao ?
c CB cắt (O') tại F Chứng minh D, E, F thẳng hàng
d Chứng minh IF là tiếp tuyến của đường tròn tâm O'
8 Cho tam giác ABC vuông tại A, đường cao AH
a Giải tam giác vuông ABC, biết B = 360
, AC = 6cm ( làm tròn đến hàng đơn vị )
b Vẽ đường tròn tâm I, đường kính BH cắt AB tại M và đường tròn tâm K đường kính CH cắt AC tại N Chứng minh tứ giác AMHN là hình chữ nhật Tính độ dài MN
c Chứng minh MN là tiếp tuyến chung của hai đường tròn (I) và (K)
d Nêu điều kiện về tam giác ABC để MN có độ dài lớn nhất
ĐỀ THI THỬ HỌC KỲ I - LỚP 9 - Thời gian làm mỗi đề: 90 phút
Đề 1:
Bài 1 :Tính: a)2 3 75 2 12 147 ) 12
b
Bài 2: Cho hàm số y = 2x-1 và y= -x
a)Vẽ đồ thị hàm số y = 2x-1 và y= -x trên cùng một hệ trục toạ độ
b) Gọi giao điểm của đồ thị hàm số y = 2x - 1 và y = -x là M Tính OM
Bài 3 : a) Rút gọn biểu thức :A = (
1
1 x -
1
1 x ) (1 -
1
x ) b) Tính giá trị của A khi x = 1
9 c) Tìm x nguyên để A có giá trị nguyên
Bài 4: Viết phương trình đường thẳng đi qua hai điểm A(1;2) và B(-2;3)
Bài 5: Một con thuyền với vận tốc 3km/h vượt qua một khúc sông nước chảy mạnh mất 10 phút; dòng nước đã đẩy chiếc thuyền đi xiên lệch một góc 350 so với hướng vuông góc với bờ Tính chiều rộng của khúc sông
Bài 6: Cho (O), đk AB = 2R và hai tia tiếp tuyến Ax, By Lấy điểm C tuỳ ý trên cung AB Từ C kẻ tiếp tuyến thứ ba cắt Ax, By tại D và E
a) Chứng minh : DE = AD + BE
b) Chứng minh : OD là trung trực của đoạn thẳng AC và OD // BC
Trang 5Trường THCS Bình Thành Năm học 2011 - 2012
c) Gọi I là trung điểm của đoạn thẳng DE, vẽ đường tròn tâm I bán kính ID Chứng minh: (I ; ID) tiếp xúc với đường thẳng AB
d) Gọi K là giao điểm của AE và BD Chứng minh: CK vuông góc AB tại H và K là trung điểm của đoạn CH
Đề 2
Bài 1: Rút gọn biểu thức :
32
3
Bài 2: Cho biểu thức
x 2 xy y x y y x
(với x > 0, y > 0, x y ) a) Rút gọn biểu thức A;
b) Tính giá trị của A khi x 2 32 ; y 42 3
(hình 1)
Bài 3: Tìm x ở hình 1
Bài 4: a)Vẽ đường thẳng (d): y = x - 2
b)Viết phương trình đường thẳng (d’) song song với ( d) và đi qua điểm E(-2; 3)
Bài 5: Giải phương trình: 2 x 1 5 11
Bài 6: Cho tam giác ABC vuông tại A Biết AB = 3cm, AC = 5cm Tính bán kính đường tròn nội tiếp tam giác ABC
Bài 7: Cho đường tròn (O; 15 cm) có MN là đường kính Từ N kẻ tia tiếp tuyến Nx với đường tròn Trên Nx lấy một điểm A sao cho AN = 20 cm
a) Tính OA
b) Từ M kẻ dây MB song song với OA Chứng minh AB là tiếp tuyến của đường tròn (O) tại B c) Tính chu vi tam giác MBN và diện tích tứ giác ABON
d) AB cắt tiếp tuyến My tại C Chứng minh AC = MC + AN
e) OC cắt MB tại E, OA cắt BN tại F Chứng minh OEBF là hình chữ nhật
A
H
x