[r]
Trang 1TRƯỜNG THCS AN TRƯỜNG C
GV: NGUYỄN VĂN HÙNG
ĐỀ THI HỌC KỲ II NĂM HỌC 2009 -2010
MÔN TOÁN KHỐI 9 THỜI GIAN: 90 phút (không kể thời gian giao đề)
I/ PHẦN TRẮC NGHIỆM:
Câu 1: (2 điểm)Khoanh tròn chữ cái in hoa đứng trước kết quả đúng
a/ Hệ phương trình 2x y x y 21
có nghiệm là
b/ Điểm M (-2; -1) thuộc đồ thị hàm số nào ?
c/ Phương trình bậc hai ax2 + bx + c = 0 (a0) có 2 nghiệm phân biệt khi:
d/ Trong các phương trình sau phương trình nào có hai nghiệm phân biệt:
A x2 - 6x + 9 = 0 B x2 + 1 = 0
C 2x2 - x - 1 = 0 D x2 + x + 1 = 0
e/ Gọi x1, x2 là nghiệm của phương trình 2x2 - 3x - 5 = 0 thì x1 + x2 là :
g/ AB = R là dây cung của đường tròn (O;R) có số đo cung là:
h/ Độ dài C của đường tròn (O;R) là:
i/ Bán kính đường tròn là bao nhiêu nếu có diện tích 36 (cm2)
Câu 2: (2 điểm) Điền tiếp vào chổ trống (…….) để được kết luận đúng
a/ Phương trình bậc hai ax2 + bx + c = 0 (a0) có a - b + c = 0 thì x1=……… và x2 =
………
b/ Phương trình x4 - 8x2 -9 = 0 có ………….nghiệm là ………
c/ Hình trụ có bán kính đáy R và chiều cao h thì thể tích là ………
d/ Mặt cầu có bán kính 3cm thì diện tích là ………
II/ PHẦN TỰ LUẬN: (6 điểm) Câu 1: Giải hệ phương trình 3 1 2 4 x y x y (1 đ) Câu 2: Cho phương trình x2 - 2x + 2m - 1 = 0 xác định m để phương trình có nghiệm kép (1 đ) Câu 3: Cho (P) : y = x2 và (D) : y = x + 2 (2 đ) a/ Vẽ (P) và (D) trên cùng hệ tọa độ Oxy b/ Bằng phép toán tìm tọa độ giao điểm M, N của (P) và (D) Câu 4: Cho nữa đường tròn đường kính AB Trên nữa đường tròn đó lấy hai điểm C, D sao cho hai tia AC và BD cắt nhau tại một điểm E ở bên ngoài đường tròn, BC và AD cắt nhau tại F a/ Chứng minh tứ giác ECFD nội tiếp (1 đ) b/ Biết số đo cung CD bằng 600, AD = 5cm Tính AE (1 đ)
-Hết -ĐÁP ÁN
Trang 2I/ PHẦN TRẮC NGHIỆM ( 4 đ)
Câu 1:
( Mỗi đáp án đúng 0,25 đ) Câu 2: (2 điểm) Câu a b c d Đáp án x1 1 x2 c a 2 x1 3; x2 3 2 R h 36 (cm2) II/ PHẦN TỰ LUẬN: Câu 1:
Câu Đáp án Điểm Câu 1
Câu 2 Câu 3: Câu 4: x = 1 y = 2 Trả lời nghiệm (x = 1; y = 2) a = 1; b = -2 ; c = 2m -1 = -8m + 8 ( hoặc ’ = -2m + 2 Để pt có nghiệm kép thì = 0 (hoặc ’ = 0) m = -1 (P) y = x2 x -2 -1 0 1 2 y = x2 4 1 0 1 4 (D) y = x +2 đi qua A( 0 ; 2) và B(-2 ; 0) y - 4 - N
3
2
M 1
-x -2 -1 0 1 2
Vẽ đúng (P) và (D) b/ Phương trình hoành độ giao điểm x2 - x -2 = 0 Tính được x1=-1 ; x2 = 2 Với x1=-1 y1 = 1 ; M( -1; 1) x2 = 2 y2 = 4 ; N(2, 4) = 900 ( góc nội tiếp chắn nữa đường tròn) = 900 (1)
E
0,5 đ 0,25 đ 0,25 đ 0,25 đ
0,25 đ 0,25 đ 0,25 đ
0,25 đ 0,25 đ
0,5 đ
0,25 đ 0,25 đ 0,25 đ 0,25 đ
Trang 3D
C
F O
Tương tự: = 900 (2)
Từ (1) và (2)
+ = 1800
Tứ giác ECFD nội tiếp
b/ = = 300 ( góc nội tiếp chắn = 600)
Tam giác vuông EAD là nữa tam giác đều cạnh AE
ED = AE (1)
Áp dụng định lý Py-ta-go trong tam giác vuông EAD :
AE2 = AD2 + DE2 (2)
Từ (1) và (2) : AE2 = AD2 + ( AE)2
AE2 = AD2
AE = (cm)
0,25 đ
0,25 đ
0,25 đ 0,25 đ
0,25 đ 0,25 đ
0,25 đ
0,25 đ