môn học với nội dung bài giảng chi tiết, sửa bài tập SGK, luyện tập trắc nghiệm mễn phí, kho tư liệu tham khảo phong phú và cộng đồng hỏi đáp sôi động nhất. Vững vàng nền tảng, Khai s[r]
Trang 1SỞ GIÁO DỤC VÀ ĐÀO TẠO
THANH HÓA
ĐỀ CHÍNH THỨC
KÌ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
NĂM HỌC 2017-2018
Môn thi: TOÁN - Lớp 9 THCS Thời gian: 150 phút (không kể thời gian giao đề)
Câu I (4,0 điểm)
1 Cho biểu thức
2
1
P
, với x 0, x 1. Rút gọn P
và tìm tất cả các giá trị của x sao cho giá trị của P là một số nguyên
2 Tính giá trị của biểu thức
2018 2017
2
P
.
2 3 2 2 3 2
Câu II (4,0 điểm)
1 Biết phương trình ( m 2) x2 2( m 1) x m có hai nghiệm tương ứng là độ dài hai 0 cạnh góc vuông của một tam giác vuông Tìm m để độ dài đường cao ứng với cạnh huyền của tam
giác vuông đó bằng 2
5
2 Giải hệ phương trình
1
x
x y
Câu III (4,0 điểm)
1 Tìm nghiệm nguyên của phương trình y2 5 y 62 ( y 2) x2 ( y2 6 y 8) x
2 Cho a b là các số nguyên dương thỏa mãn , p a2 b2 là số nguyên tố và p chia hết 5 cho 8 Giả sử x y , là các số nguyên thỏa mãn ax2 by2 chia hết cho p Chứng minh rằng cả hai
số x y , chia hết cho p
Số báo danh
Trang 2Cho tam giác ABC có ( ), ( ), ( ) O I Ia theo thứ tự là các đường tròn ngoại tiếp, đường tròn nội tiếp và đường tròn bàng tiếp đối diện đỉnh A của tam giác với các tâm tương ứng là , , O I I a
Gọi D là tiếp điểm của ( ) I với BC , P là điểm chính giữa cung của ( ) O , PI cắt ( )a O tại
điểm K Gọi M là giao điểm của PO và BC N là điểm đối xứng với , Pqua O
1 Chứng minh IBI C là tứ giác nội tiếp a
2 Chứng minh NI là tiếp tuyến của đường tròn ngoại tiếp tam giác a I MP a .
a
DAI KAI
Câu V (2,0 điểm)
Cho x y z , , là các số thực dương thỏa mãn x z Chứng minh rằng
2
2
2
- HẾT -
BAC
Trang 3Website HOC247 cung cấp một môi trường học trực tuyến sinh động, nhiều tiện ích thông minh, nội dung bài giảng được biên soạn công phu và giảng dạy bởi những giáo viên nhiều năm kinh
nghiệm, giỏi về kiến thức chuyên môn lẫn kỹ năng sư phạm đến từ các trường Đại học và các
trường chuyên danh tiếng
các khóa luyện thi THPTQG các môn: Toán, Ngữ Văn, Tiếng Anh, Vật Lý, Hóa Học và Sinh Học
PTNK, Chuyên HCM (LHP-TĐN-NTH-GĐ), Chuyên Phan Bội Châu Nghệ An và các trường Chuyên khác cùng TS.Trần Nam Dũng, TS Pham Sỹ Nam, TS Trịnh Thanh Đèo và Thầy Nguyễn Đức Tấn
lớp 6, 7, 8, 9 yêu thích môn Toán phát triển tư duy, nâng cao thành tích học tập ở trường và đạt điểm tốt ở các kỳ thi HSG
học sinh các khối lớp 10, 11, 12 Đội ngũ Giảng Viên giàu kinh nghiệm: TS Lê Bá Khánh Trình, TS Trần Nam
Dũng, TS Pham Sỹ Nam, TS Lưu Bá Thắng, Thầy Lê Phúc Lữ, Thầy Võ Quốc Bá Cẩn cùng đôi HLV đạt thành
tích cao HSG Quốc Gia
môn học với nội dung bài giảng chi tiết, sửa bài tập SGK, luyện tập trắc nghiệm mễn phí, kho tư liệu tham khảo phong phú và cộng đồng hỏi đáp sôi động nhất
phí từ lớp 1 đến lớp 12 tất cả các môn Toán- Lý - Hoá, Sinh- Sử - Địa, Ngữ Văn, Tin Học và Tiếng Anh
Vững vàng nền tảng, Khai sáng tương lai
Học mọi lúc, mọi nơi, mọi thiết bi – Tiết kiệm 90%
Học Toán Online cùng Chuyên Gia
HOC247 NET cộng đồng học tập miễn phí HOC247 TV kênh Video bài giảng miễn phí