1. Trang chủ
  2. » Giáo án - Bài giảng

Bài tập tích phân ôn luyện nâng cao

8 14 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 135,82 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Exercise on Integration1.1 Substitution Use a suitable substitution to evaluate the following integral... Z e2xcos 3xdx 1.3 Reduction Formula Prove the following reduction formulas... Z

Trang 1

Exercise on Integration

1.1 Substitution

Use a suitable substitution to evaluate the following integral

1

Z

dx

2 − 5x

2

Z e3x+ 1

ex+ 1 dx

3

Z

x

1 − x2 dx

4

Z

x2√3

1 + x3dx

5

(1 + x2)2

6

x(1 + x)

7

Z

1

x2sin1

xdx 8

Z

xe−x2dx

9

Z

(ln x)2

x dx

10

Z

exdx

2 + ex

11

ex+ e−x

12

Z

cos√

x

x dx

13

Z tan xdx

14

Z dx

1 + ex

15

Z x(x2+ 2)99dx

16

Z

x

25 − x2dx 17

Z

x

√ 3x2+ 1dx 18

Z

x2

9 − x3dx 19

Z x(x + 2)99dx

20

Z xdx

√ 4x + 5 21

Z

x√

x − 1dx

22

Z (x + 2)√

x − 1dx

23

Z xdx

x + 9 24

Z

x3(1 + 3x2)12dx

1.2 Integration By Parts

1

Z

ln xdx

2

Z

x2ln xdx

3

Z  ln x x

2

dx

4

Z

xe−xdx

Trang 2

Z

x2e−2xdx

6

Z

x cos xdx

7

Z

x2sin 2xdx

8

Z

(ln x)2dx

9

Z

sin−1xdx

10

Z

x tan−1xdx

11

Z

ln(x +√

1 + x2)dx

12

Z

x sin2xdx

13

Z sin(ln x)dx

14

Z

x sin 4xdx

15

Z

x cos−1xdx

16

Z tan−1xdx

17

Z

x99ln xdx

18

Z

ln x

x101dx 19

Z

x sec2xdx

20

Z

e2xcos 3xdx

1.3 Reduction Formula

Prove the following reduction formulas

1 In=

Z

xneaxdx; In = x

neax

a − n

aIn−1, n ≥ 1

2 In=

Z

cosnxdx; In = sin x cos

n−1x

n − 1

n In−2, n ≥ 2

3 In=

Z

1 sinnxdx; In= −

cos x (n − 1) sinn−1x+

n − 2

n − 1In−2, n ≥ 2

4 In=

Z

xncos xdx; In = xnsin x + nxn−1cos x − n(n − 1)In−2, n ≥ 2

5 In=

(x2− a2)n; In = − x

2a2(n − 1)(x2− a2)n−1 + 2n − 3

2a2(n − 1)In−1, n ≥ 1

6 In=

Z

xndx

x + a; In =

2xn√

x + a 2n + 1 − 2an

2n + 1In−1, n ≥ 1

7 In=

Z

(ln x)ndx; In= x(ln x)n− nIn−1, n ≥ 1

8 In=

Z 1

0

xn√

1 − xdx; In = 2n

2n − 3In−1, n ≥ 2.

Trang 3

1.4 Trigonometric Integrals

Evaluate

1

1 − cos x

2

Z

sin5x cos xdx

3

Z

sin 3x sin 5xdx

4

Z

cosx

2cos

x

3dx 5

Z

cos3xdx

6

Z

sin4xdx

7

Z

sec2x tan2xdx

8

Z

sec x tan3xdx

9

Z

cot2xdx

10

cos x sin2x 11

Z sin x cos3x

1 + cos2x, dx 12

Z tan5xdx

13

sin4x cos4x, dx 14

Z sin 5x cos xdx

15

Z cos x cos 2x cos 3xdx

16

Z cos5x sin3xdx

17

Z cos5x sin4xdx

18

Z sin2x cos4xdx

1.5 Trigonometric Substitution

Evaluate the following integrals by trigonometric substitution

1

Z

x2

1 + x2 dx

2

(1 − x2)32

3

Z r 1 + x

1 − xdx

4

Z

dx

(1 + x2)3

5

Z x2dx

9 − x2

6

Z dx

4 + x2

7

Z

x2√

16 − x2dx

8

Z

dx

x2√

x2+ 4 9

(4x2+ 1)3/2 10

Z

1 (2x − x2)3/2

Trang 4

1.6 Rational Functions

Evaluate the following integrals of rational functions

1

Z

x2dx

1 − x2

2

Z x3

3 + xdx

3

Z (1 + x)2

1 + x2 dx

4

Z

dx

x2+ 2x − 3

5

(x2 − 2)(x2+ 3)

6

Z

x2+ 1 (x + 1)2(x − 1), dx

7

(x2 − 3x + 2)2, dx

8

Z

x2+ 5x + 4

x4+ 5x2+ 4, dx 9

Z

dx (x + 1)(x2+ 1) 10

Z 2x3− 4x2− x − 3

x2− 2x − 3 dx 11

Z

4 − 2x (x2+ 1)(x − 1)2 dx 12

Z

dx x(x2+ 1)2

13

(x − 1)(x − 2)(x − 3) 14

x2(x2− 2x + 2)

1.7 t-method

Use t-substitution to evaluate the following integrals

1

Z dx

sin3x

2

Z

dx

1 + sin x

3

sin x cos4x

4

2 + sin x 5

Z

1 − cos x

3 + cos xdx 6

Z cos x + 1 sin x + cos xdx

1.8 Miscellaneous

Evaluate the following integrals

1

Z (ln x)2

x dx

2

Z

x(ln x)2dx

3

Z

xdx

1 − x2

4

Z x + 4 (x + 1)2dx

5

Z cos3x sin2xdx

6

Z xdx (1 + x2)2

Trang 5

Z e2xdx

1 + ex

8

x(1 + 2 ln x)

9

Z

cos2x sin3xdx

10

Z sin 2x

1 + cos2xdx

11

Z

e1x

x2dx

12

Z

sin x

cos2xdx

13

Z

x tan2xdx

14

Z

cot x

1 + sin xdx

15

Z x3dx

x2− 1

16

Z

dx

e2x+ ex− 2

17

Z

ln x

x√

1 + ln xdx

18

Z √

9 − x2

x2 dx

19

Z

x2dx

x2+ 1

20

x2+ 9

21

Z cos3x

sin x dx

22

Z

x2+ 8

x2− 5x + 6dx

23

Z xdx

x − 2

24

1 + ex

25

Z

cos(ln x)dx

26

Z

x sin2xdx

27

ex− 1 28

Z 4dx

x2√

4 − x2

29

Z

x + 1

x2(x − 1)dx 30

Z sec3x tan xdx

31

Z

x3√

x2 + 1dx

32

Z cos 2x sin 3xdx

33

Z x4+ x2− 1

x3+ x dx 34

Z x3dx

x2+ 4 35

(x2− 1)2

36

Z dx

1 +√ x 37

Z cos√ xdx

38

Z tan4xdx

39

Z

dx

√ x(x − 1) 40

Z

x2tan−1xdx

41

Z sin−1xdx

42

xdx

1 − x 43

Z √

x + 1

x dx 44

Z √

x√

1 − xdx

Trang 6

Section 1.1: Substitution

1 −25√

2 − 5x + C

2 12e2x− ex+ x + C

3 −√

1 − x2 + C

4 14(1 + x3)4 + C

5 −2(1+x1 2 )+ C

6 2 tan−1√

x + C

7 cosx1 + C

8 −12e−x2 + C

9 13(ln x)3+ C

10 ln(2 + ex) + C

11 tan−1ex+ C

12 2 sin√

x + C

13 − ln | cos x| + C

14 x − ln(1 + ex) + C

15 2001 (x2+ 2)100+ C

16 −√

25 − x2+ C

17 1 3

√ 3x2+ 1 + C

18 −23√

9 − x3+ C

19 (x+2)101101 −(x+2)50100 + C

20 121 (2x − 5)√

4x + 5 + C

21 2

15(x − 1)3/2(3x + 2) + C

22 25(x − 1)3/2(x + 4) + C

23 23(x − 18)√

x + 9 + C

24 1

135(3x2+ 1)3/2(9x2 − 2) + C Section 1.2: Integration By Parts

1 x ln x − x + C

2 x33(ln x − 13) + C

3 −1x((ln x)2+ 2 ln x + 2) + C

4 −(x + 1)e−x+ C

5 −e−2x4 (2x2+ 2x + 1) + C

6 x sin x + cos x + C

7 −2x24−1cos 2x + x2 sin 2x + C

8 x(ln x)2− 2x ln x + 2x + C

9 x sin−1x +√

1 − x2+ C

10 −x2 +1+x22 tan−1x + C

11 x ln(x +√

1 + x2) −√

1 + x2+ C

12 x42 − x

4sin 2x − 18cos 2x + C

13 x2(sin(ln x) − cos(ln x)) + C

14 161 sin 4x − 14x cos 4x + C

15 x2cos2−1x +sin−14 x −x√1−x 2

16 x tan−1x − 12log(x2+ 1) + C

17 1

100x100ln x − x100

10000 + C

18 −10000x1 100 − ln x

100x 100 + C

19 x tan x + ln(cos x) + C

20 131 e2x(3 sin 3x + 2 cos 3x) + C

Trang 7

Section 1.4: Trigonometric Integrals

1 − cotx2 + C

2 16sin6x + C

3 14sin 2x − 161 sin 8x + C

4 3 sinx6 +35 sin5x6 + C

5 sin x − 13sin3x + C

6 3

8x − 1

4sin 2x + 1

32sin 4x + C

7 13tan3x + C

8 13sec3x + − sec x + C

9 −x − cot x + C

10 −sin x1 + 12ln1+sin x1−sin x + C

11 −12cos2x +12 ln(1 + cos2x) + C

12 tan44 −tan 2 x

2 − ln | cos x| + C

13 −8 cot 2x − 83cot32x + C

14 −18cos 4x − 121 cos 6x + C

15 x4 + sin 2x8 +sin 4x16 + sin 6x24 + C

16 cos88(x)− cos66(x) + C

17 sin99(x) − 2 sin77(x) +sin55(x) + C

18 −16cos5x sin x + 241 cos3x sin x +

1

16cos x sin x +161 x + C

Section 1.5: Trigonometric Substitution

1 x − tan−1x + C

2 √x

1−x 2 + C

3 −√

1 − x2 + sin−1x + C

4 √x

1+x 2 + C

5 92sin−1 x3 − x

2

9 − x2+ C

6 ln |x +√

4 + x2| + C

7 √

16 − x2x 3

4 − 2x+32 sin−1 x4 +C

8 −

x 2 +4

9 √ x 4x 2 +1

10 √x−1 2x−x 2

Section 1.6: Rational Functions

1 −x + 1

2ln |1+x

1−x| + C

2 9x − 32x2 +13x3− 27 ln |3 + x| + C

3 x + ln(1 + x2) + C

4 14ln |x−1x+3| + C

5 1

10√2ln |x−

√ 2 x+√2| − 1

5√3tan−1 x√

3 + C

6 x+11 +12ln |x2− 1| + C

7 −x25x−6−3x+2+ 4 ln |x−1x−2| + C

8 tan−1x +5

6lnx2+1

x 2 +4 + C

9 12tan−1x +14ln(x+1)x2 +12 + C

10 x2+ 2 ln |x + 1| + 3 ln |x − 3| + C

11 tan−1x − 1

x−1 + ln x2+1

(x−1) 2 + C

12 2(x21+1) + ln |x| − 12ln(x2 + 1) + C

13 92ln(x−3)−4 ln(x−2)+12ln(x−1)+C

14 14lnx2 −2x+2x2



− 1

2tan−1(1 − x) + C

Trang 8

Section 1.7: t-method

1 −2 sincos x2 x +12 ln | tanx2| + C

2 tan x − sec x + C

3 cos x1 +3 cos13 x + ln | tanx2| + C

4 √2

3tan−1



2 tan(x

2)+1

√ 3

 + C

5 2√

2 tan−1



tan(x

2)

√ 2



− x + C

6 12(x + ln(sin x + cos x + 3)) −√1

7tan−1



2 tan(x

2)+1

√ 7

 + C

Section 1.8: Miscellaneous

1 13(ln x)3+ C

2 12x2(ln x)2− 1

2x2ln x + 14x2+ C

3 −√

1 − x2 + C

4 ln |x + 1| − x+13 + C

5 −sin x1 − sin x + C

6 −2(1+x1 2 )+ C

7 ex− ln(1 + ex) + C

8 12ln |1 + 2 ln x| + C

9 15cos5x − 13cos3x + C

10 − ln(1 + cos2x) + C

11 −e1x + C

12 sec x + C

13 −x22 + x tan x + ln cos x + C

14 − ln |1 + csc x| + C

15 12x2+12ln |x2− 1| + C

16 −x

2 +

1

3ln |ex− 1| + C

17 −4

3

1 + ln x +2

3(ln x)√

1 + ln x + C

18 −

9−x 2

x − sin−1 x

19 x − tan−1x + C

20 ln |x +√

x2+ 9| + C

21 ln | sin x| − 12sin2x + C

22 x + 17 ln |x − 3| − 12 ln |x − 2| + C

23 23(x − 2)32 + 4(x − 2)12 + C

24 x − 2 ln(1 +√

1 + ex) + C

25 x2(cos(ln x) + sin(ln x)) + C

26 14x2 −1

4x sin 2x − 18 cos 2x + C

27 −2 sin−1e−x2 + C

28 −

√ 4−x 2

29 1

x − 2 ln |x| + 2 ln |x − 1| + C

30 13sec3x + C

31 13x2(x2+ 1)32 − 2

15(x2+ 1)52 + C

32 −101 cos 5x − 12cos x + C

33 12x2 − ln |x| +1

2 ln(x2+ 1) + C

34 13(x2+ 4)3 − 4√x2+ C

35 1

4ln |x + 1| − 1

4ln |x − 1| − x

2(x 2 −1) + C

36 2√

x − 2 ln(1 +√

x) + C

37 2√

x sin√

x + 2 cos√

x + C

38 13tan3x − tan x + x + C

39 ln |√

x − 1| − ln |√

x + 1| + C

40 13x3tan−1x − 16x2+16ln(x2+ 1) + C

41 x sin−1x +√

1 − x2+ C

42 sin−1√

x −√

x√

1 − x + C

43 2√

x + 1 + ln |√

x − 1| − ln |√

x + 1| + C

44 14sin−1√

x −14√

x√

1 − x(1 − 2x) + C

Ngày đăng: 07/04/2021, 20:44

TỪ KHÓA LIÊN QUAN

w