1. Trang chủ
  2. » Giáo án - Bài giảng

Bài soạn thi gua ki 08-09 so 4

4 309 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra giữa học kỳ II năm học 2008-2009 môn Toán Lớp 12 (Cơ bản)
Trường học Trường THPT Phú Lộc
Chuyên ngành Toán Lớp 12 (Cơ bản)
Thể loại Đề kiểm tra giữa học kỳ
Năm xuất bản 2008-2009
Định dạng
Số trang 4
Dung lượng 291 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Viết phương trình mặt cầu có đường kính là AB.. Viết phương trình mặt phẳng   chứa cạnh AB và vuông góc với mpP... Suy ra I là tâm của mặt cầu có đường kính là AB.

Trang 1

TRƯỜNG THPT PHÚ LỘC

TỔ TOÁN TIN

ĐỀ KIỂM TRA GIỮA HỌC KỲ II NĂM HỌC 2008 - 2009 MÔN : TOÁN LỚP 12 (CƠ BẢN)

THỜI GIAN : 90 PHÚT ( không kể thời gian phát đề)

Câu 1 ( 3 điểm)

Tính các tích phân sau:

a

2

1

A   x x  1 dx b 2

1

e

x xdx

  c 4 tan +1

4 0

sin 2 C

cos

x

x e

dx x

 

Câu 2 ( 2 điểm)

a Tính diện tích hình phẳng giới hạn bởi:

5 1

x y

x

 , trục hoành, x = 0 và x = 5

b Tính thể tích vật thể tròn xoay do hình phẳng giới hạn bởi:

y x  x và y = 0 quay quanh trục Ox.

Câu 3 ( 1 điểm)

Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số 1 3 3 2

2

yxx  và tiếp tuyến của nó tại điểm (-3;-2)

Câu 4 ( 1 điểm)

Cho a                 1;7;0 ,                b   2; 1; 1  

Tính góc giữa hai vectơ a 

b 

Câu 5 ( 2 điểm)

Cho A( 2; 1; 2), B( 4;-3; 1) và (P): x - 13y - 5z + 5 = 0

a Viết phương trình mặt cầu có đường kính là AB

b Viết phương trình mặt phẳng   chứa cạnh AB và vuông góc với mp(P)

Câu 6 ( 1 điểm)

Cho mặt cầu (S) có phương trình: x2 y12 z22 27

Tìm phương trình mặt phẳng   tiếp xúc với mặt cầu (S) và cắt ba tia Ox, Oy, Oz lần lượt tại M, N, P sao cho OM = ON = OP ( M, N, P không trùng với O)

==== Hết ====

Trang 2

ĐÁP ÁN VÀ THANG ĐIỂM

ĐỀ KIỂM TRA GIỮA HỌC KỲ II NĂM HỌC 2008 - 2009

MÔN : TOÁN LỚP 12 (CƠ BẢN)

Câu 1.

3 đ

1

a

1 đ

Tính :

2

1

Ax x  1dx

Đặt ux 1 u2   x 1 x u 2 1,dx2udu

Đổi cận: x 1 u0, x 2 u1

0,5 đ

Au 1 2u udu 2u 2u du

1

0

0,5 đ

1

b

1 đ

1

e

x xdx



Đặt u lnxdv x dx 2 , ta có du 1dx

x

3

0,5 đ

3

1

B=

e

e

1

c

1 đ Ta có:

Đặt t= tanx+1 2

cos

dx dt

x

4

2

1

C 2 t 1 e dt t

0,25đ

Đặt u = t - 1 và dv = etdt, ta có du = dt và v = et 0,25đ

2

1

C 2 t 1 e t  2e dt t 2e  2e t 2e 0,25đ

Trang 3

Câu 2.

2 đ

2.a

1 đ

Diện tích hình phẳng:

5

0

- 5 S=

1

x dx

x 

0,25đ

5

0

5 S

1

x dx x

 vì: x x 51  0 x 0;5

5

5 0 0

6

x

2.b

1 đ Ta có

xx  x  x

Thể tích vật thể:  

2

2 2

0

Vx  2x dx

0,5 đ

2 2

Câu 3.

1 đ Viết phương trình tiếp tuyến tại (-3;-2)

 

2

Phương trình tiếp tuyến tại (-3;-2) là:

Giải phương trình hoành độ giao điểm:

2

0

0,5 đ

Diện tích hình phẳng:

3

3

4x 4x 4x 4 dx

3 3

S

4x 4x 4x 4 dx 16x 4x 8x 4 x

297 135 27

16 16

0,5 đ

Câu 4.

 2

cos a ,

6

 

Vậy góc giữa hai vectơ  a b  , 106 46'43,16''0

1 đ

Trang 4

Câu 5.

2 đ

5.a

1 đ

Gọi I là trung điểm của đoạn AB

Suy ra I là tâm của mặt cầu có đường kính là AB

 2  2  2

3

0,75 đ

Vậy phương trình mặt cầu:    

2

5.b

1 đ AB  2; 4; 1  

,(P) có vectơ pháp tuyến n  P 1; 13; 5  

Ta có AB,  n P

không cùng phương, có giá song song hoặc nắm trong

mp   Nên mp   có vectơ pháp tuyến n AB n P  7;9; 22 

  

0,5 đ

PT   : 7(x - 2) + 9(y - 1) - 22(z - 2 ) = 0 Vậy phương trình mp   : 7x + 9y - 22z + 21 = 0 0,5 đ

Câu 6.

1 đ Mặt phẳng   cắt các tia Ox, Oy, Oz lần lượt tại M, N, P nên:

M( a; 0 ; 0), N ( 0; b; 0), P( 0; 0; c) và a, b, c > 0

Mặt khác OM = ON = OP suy ra a = b = c > 0

Phương trình mặt phẳng   theo đoạn chắn: 1

a a a

a 0, a 0

x y z

0,5 đ

(S):x2  y12 z22 27có tâm I( 0;-1;-2) và bán kính R=3 3

Mp   tiếp xúc với (S) d ,  R - 3 - a 3 3 a+3 9

3

I 

          ( loại)

Vậy mp  : x + y + z - 6 = 0

0,5 đ

Chú ý : Ở mỗi phần, mỗi câu, nếu học sinh có cách giải khác đáp án nhưng đúng và chặt chẽ

thì vẫn cho điểm tối đa của phần hoặc câu đó

==== Hết ====

Ngày đăng: 26/11/2013, 08:11

HÌNH ẢNH LIÊN QUAN

Diện tích hình phẳng: - Bài soạn thi gua ki 08-09 so 4
i ện tích hình phẳng: (Trang 3)

TỪ KHÓA LIÊN QUAN

w