1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Laplace transform (TOÁN kỹ THUẬT SLIDE)

53 27 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 53
Dung lượng 472 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Basic ConceptsDifferential Equation ft Solution of Differential Equation ft Algebra Equation Fs Solution of Algebra Equation Fs... Laplace transorm of the derivative of any order n 0 .

Trang 1

Chap 4 Laplace Transform

Trang 2

Basic Concepts

Laplace Transform

■ Definition, Theorems, Formula

Inverse Laplace Transform

■ Definition, Theorems, Formula

Solving Differential Equation

Trang 3

Basic Concepts

Differential Equation f(t)

Solution of Differential Equation f(t)

Algebra Equation F(s)

Solution of Algebra Equation F(s)

Trang 4

Basic Concepts

1 )

0 ( ,1 )

0

(

4 2

′′

y y

t y

y y

4

23

2 3

4

4 )

(

s s

s

s

s s

2

3 + + − + −

=

t f

y = ( )

Trang 5

f e

t f s

Trang 7

Laplace Transform

Example : Find L { 1 }

Sol:

s e

dt e

dt e

t s

t s st

1

1 }

1 {

0

)(0

)(0

Trang 8

Laplace Transform

Example : Find L { eat }

Sol:

a s

e

dt e

dt e

e e

t a s

t a s

at st at

} {

)(

0

)(

0L

Trang 9

∴ L { tt } does not exist

Trang 10

{ t + L

}

{sin t π

L

} ) {( at + b 2

L

Trang 11

( )}

( )

( { af t + bg t = aF s + bG s

L

) 0 ( )

0 ( )

( )}

( { f (n) t = snF ssn−1f −  − f (n−1)

L

) (

1 }

) (

)}

( { eat f t = F sa

L

Trang 12

1 ( )}

(

L

du u

F t

)

( { L

) (

1 )}

(

{

a

s F a

at

L

Trang 13

Linearity of Laplace

Transform

Proof:

) ( )

( )}

( { )}

( L{

)}

( )

(

L{ af t + bg t = a f t + bL f t = aF s + bG s

) ( )

(

) ( )

(

) ( )

(

) ( )

( )}

( )

( {

0 0

0 0

0

s bG s

aF

dt t g e

b dt

t f e a

dt t bg e

dt t af e

dt t

bg t

af e

t bg t

af

st st

st st

Trang 14

Application for Linearity of Laplace

Transform

2 2

2 2

2 2

2 2

L(sinwt)

L(coswt)

) L(

w s

w

w s

s

w s

w i

w s

=

Trang 15

First Shifting Theorem

If f(t) has the transform F(s) (where s > k), then eatf(t) has the transform

F(s-a), (where s-a > k), in formulas,

or, if we take the inverse on both sidesL{ eat f ( t )} = F ( sa )

)}

( { L )

f

Trang 16

Examples for First Shifting Theorem

2 2

2 2

) (

sinwt) L(

) (

coswt) L(

w a

s

w e

w a

s

a

s e

Trang 17

Excises sec 5.1

#1, #7, #19, #24, #29,#35, #37,#39

Trang 18

Laplace of Transform the

Derivative of f(t)

Prove

Proof:

) 0 ( )

( )}

( { ft = sF sf

L

) ( )

( )

(

) ( )}

( {

00

0

dt t

f e

s t

f e

dt t

f e

t f

st st

Trang 19

Laplace transorm of the derivative of

any order n

) 0 (

) 0 ( ' )

0 ( )

( )

(

) 0 ( ' )

0 ( )

( )

0 ( ' )

' ( )

"

(

) 1 ( 2

1 )

n n

f

L

f sf

f L s f

f sL f

L

Trang 21

Differential Equations, Initial Value

Problem

How to use Laplace transform and Laplace inverse to solve the

differential equations with given initial values

1

0, ' ( 0 ) )

y a

1)

(

)(

)

()

(

)0()

0()(

)()

0()

0()(

)(

)()

0()

0()

0(

)}

({

)(

2 2

2 2

s Q Assume

b as

s

s

R b

as s

y y

a s

Y

s R y

y a s

Y b as

s

s R bY

y sY

a y

sy Y

s

t y Y

Let

t r by

y a y

=

++

++

+

′+

+

=+

+

=+

−+

′+

L

Trang 22

Example : Explanation of the Basic

Concept

Examples

1 )

0 ( ' ,

1 )

0 ( ,

y

1 )

0 ( ' , 1 )

0 ( ,

' 2

" + y + y = ey = − y =

Trang 23

Laplace Transform of the Integral of

a Function

Theorem : Integration of f(t)

Let F(s) be the Laplace transform of f(t) If f(t) is piecewise

continuous and satisfies an inequality of the form (2), Sec 5.1 , then

or, if we take the inverse transform on both sides of above form

Trang 24

An Application of Integral Theorem

Examples

) (

, ) (

1 )

w s

, ) (

1 )

w s

s

f

+

=

Trang 25

t a

t

u

, 1

,

0 )

(

Trang 26

) 2 (

) 2 (

), 2 (

)

(

, sin

5 )

f t

u t

f

t t

f

)) 6 (

) 4 (

2 )

1 (

(

, )

(

− +

u t

u

k

k t

f

Trang 27

Second Shifting Theorem; t-shifting

IF f(t) has the transform F(s), then the “shifted function”

has the transform e-asF(s) That is

a t

f

a

t a

t u a t

f t

f

), (

,

0 )

( ) (

) (

~

) ( )}

( ) (

{ f ta u ta = easF s

L

Trang 28

The Proof of the T-shifting

Theorem

Prove

Proof:

) ( )}

( ) (

{ f ta u ta = easF s

L

, ) (

) 1 )(

( )

0 )(

(

) (

) (

)}

( ) (

{

) ( 0

0

t-a v

Let dv

v f e

dt a

t f e dt

a t f e

dt a t u a t f e a

t u a t f

a a a

a v s

a

st

a st st

Trang 29

Application of Unit Step Functions

Note

Find the transform of the function

) ( )}

( ) (

t u

π

2 2

0 , sin 0

2 )

(

t t

t t

t f

Trang 30

Example :

Find the inverse Laplace transform f(t) of

1

4 2

2 )

2 2

e s

e s

s F

s s

Trang 31

Short Impulses Dirac’s Delta

, 0

, /

1 )

f k

t a

Trang 32

t a

t

, 0

, )

(

) (

lim )

(

0 f t a a

Trang 33

t − )} = −

( { δ L

ks

k k

k k

k k

ks as

s k a

as k

k

e

a t

f a

t f a

t

a t

f a

t

ks

e e

e

e ks

a t

f

k a

t u a

t

u k

a t

lim )}

( lim

L{

)}

( L{

) (

lim )

(

1 ]

[

1 )}

( L{

))]

( (

) (

[

1 )

(

0 0

0

) (

δ δ

Trang 34

Example

) 1 (

) (

) 2 (

) 1 (

) (

0 )

0 ( ' , 0 )

0 ( ),

( 2

' 3

+

t t

r B

case

t u t

u t

r A

case

y y

t r y

y y

δ

Trang 36

Differentiation and Integration of

Transforms

Differentiation of transforms

) ( ' )}

( {

)]

( [

) ( '

) ( )}

( {

) (

0

0

s F

t tf

dt t

f t e

s F

dt t

f e

t f

s F

Trang 37

Example

? }

Trang 38

Integration of Transform

t

t

f s

d s

F

s d s

F t

t f

s

s

)

( }

~ )

~ ( {

~ )

~ ( }

)

( {

Trang 39

Example

Find the inverse transform of the function

) 1

Trang 40

f t

g t

g

21

2

Trang 42

Laplace Transform

Example 4-7 : Prove

Proof:

) ( ) ( )}

( )

( { f tg t = F s G s

L

, )

( ) (

) (

) (

) (

) ( )}

( )

( {

0

) (

0

0 0

0 0

t v

Let dv

d v g f

e

dt d

t g f

e

dt d

t g f

e t

g t

f

v s

t st

t st

τ

τ τ

τ

τ τ

τ

τ

L

Trang 43

Differential Equation

)

(t

r by

y a

+

=

= +

+

t

d r

t q t

y

s R s

Q y

r s

R b

as s

s Q let

r y

b as

s

0

2 2

) ( ) (

) (

) ( ).

( )

L(

) L(

) ( ),

/(

1 )

(

) L(

) L(

) (

τ τ

τ

Trang 44

Integration Equations

0 ( ) sin( ) )

1 1

1

1

1

1

} sin {

)}

( {

sin )

sin(

) ( )

(

2

2 2

0

s Y

s

Y s

t y

t t

y Y

t y

t d

t y

t t

=

=

∗ +

=

− +

= ∫

L L

τ τ

τ

Trang 46

1 , p > −

1

)1

a

s

1

Trang 47

)( − +ω

a s

a s

 , 2 , 1 , n =

Γ p

Trang 48

Inverse Laplace Transform

Definition

The Inverse Laplace Transform of a function F(s) is defined as

ds s

F

e i

s F t

i a

2

1 )}

( {

)

π

1-

L

Trang 49

Inverse Laplace Transform

( )}

( )

( { aF s + bG s = af t + bg t

-1L

) ( )}

0 ( )

0 ( )

( { snF ssn−1f −  − f (n−1) = f (n) t

-1L

= t f d s

L

) ( )}

( { F sa = eat f t

-1

L

ds s F

e i

s F t

i a

st ( ) 2

1 )}

( { )

( = = ∫ −+∞∞

π

1 -

L

Trang 50

Inverse Laplace Transform

1 ( )}

u

Fs

)

( }

) (

1 -

L

) ( )}

L

Trang 51

Inverse Laplace Transform

s

Trang 52

Inverse Laplace Transform

Formula

F(s) f(t) = L -1{F(s)}

2 2

)( − +ω

a s

a s

2

2 −ω

s s

Trang 53

Solving Differential Equation

1 )

(

) (

)

( )

(

) 0 ( )

0 ( ) (

) ( )

0 ( )

0 ( ) (

) (

) ( )

0 ( )

0 ( )

0 (

)}

( {

) (

2

2 2

2 2

b as

s

s Q Assume

b as

s

s

R b

as s

y y

a

s Y

s R y

y a s

Y b as

s

s R bY

y sY

a y

sy Y

s

t y Y

Let

t r by

y a y

+

′ +

+

=

+ +

=

+ +

+ +

+

′ +

+

= +

+

= +

− +

′ +

′′

L

Ngày đăng: 29/03/2021, 18:43

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w