CÔNG THỨC NGUYÊN HÀM
0dx C
dx x C
1
x
x dx C 1
1
1 1 1
(x a) (x a) dx C 1
1
1 (ax b) (ax b) dx C 1
a 1 u
u du C 1
1
1
dx ln x C
x
1
dx ln x a C
x a
1 1
dx ln ax+b C ax+b a
1
du ln u C u
e dx e C
e dx e C
1
e dx e C
a
e du e C
x
a dx C
ln a
x n
x n
mx+n mx+n
u u
a
a dx C
ln a
1 a
a dx C
m ln a a
a du C
ln a
cos xdx sin x C
cos(x+a)dx sin(x+a) C
1 cos ax.dx sin ax C
a 1 cos(ax+b)dx sin(ax+b) C
a cosu du sinu C
sin xdx cos x C
sin(x a)dx cos(x a) C
1 sin axdx cos ax C
a 1 sin(ax b)dx cos(ax b) C
a sinu du cosu C
Trang 21
dx tan x C
cos x
2 2 2 2
1
dx tan(x a) C cos (x a)
dx tan ax C cos ax a
dx tan(ax+b) C cos (ax+b) a
1
du tanu C cos u
2
1
dx cot x C
sin x
2 2 2 2
1
dx cot(x a) C sin (x a)
dx cot ax C sin ax a
dx cot(ax+b) C sin (ax+b) a
1
du cotu C sin u
t anxdx ln cosx C
t an(x+a)dx ln cos(x+a) C
1
t an(ax)dx ln cosax C
a 1
t an(ax+b)dx ln cos(ax+b) C
a tan udu ln cosu C
cotxdx ln sinx C
cot(x+a)dx ln sin(x+a) C
1 cot(ax)dx ln sinax C
a 1 cot(ax+b)dx ln sin(ax+b) C
a cot udu ln sinu C
dx ln C (a b) (x a)(x b) b a x b
dx ln C (a b) (x a)(b x) b a b x
dx ( )dx (ax b)(cx d) ax b cx d
dx ( )dx (ax b)(cx d) ax b cx d
sau đó tìm A, B bằng cách đồng nhất 2 tử số