1. Trang chủ
  2. » Luận Văn - Báo Cáo

Lecture Principle of inventory and material management - Lecture 18

64 48 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 64
Dung lượng 399,02 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Lecture 18 - Forecasting (Continued). The contents of this chapter include all of the following: Compute three measures of forecast accuracy, develop seasonal indexes, conduct a regression and correlation analysis, use a tracking signal.

Trang 1

Forecasting (Continued)

Books

• Introduction to Materials Management, Sixth Edition, J. R. Tony Arnold, P.E., CFPIM, CIRM, Fleming  College, Emeritus, Stephen N. Chapman, Ph.D., CFPIM, North Carolina State University, Lloyd M.  Clive, P.E., CFPIM, Fleming College

• Operations Management for Competitive Advantage, 11th Edition, by Chase, Jacobs, and Aquilano, 2005,  N.Y.: McGraw­Hill/Irwin.

• Operations Management, 11/E, Jay Heizer, Texas Lutheran University, Barry Render, Graduate School of  Business, Rollins College, Prentice Hall

Trang 2

þ Conduct a regression and correlation

analysis

þ Use a tracking signal

Trang 3

Mean Absolute Deviation (MAD)

n

Mean Squared Error (MSE)

n

Trang 4

Mean Absolute Percent Error (MAPE)

n

n

i = 1

Trang 5

Comparison of Forecast Error 

Trang 6

= 98.62/8 = 12.33 For α = .50

Trang 7

= 1,561.91/8 = 195.24 For α = .50

n

Trang 8

Comparison of Forecast Error 

Trang 9

Comparison of Forecast Error 

Trang 11

Ft =  α (At ­ 1) + (1 ­  α )(Ft ­ 1 + Tt ­ 1)

Tt =  β (Ft  ­ Ft ­ 1) + (1 ­  β )Tt ­ 1

Step 1: Compute Ft Step 2: Compute Tt Step 3: Calculate the forecast FITt = Ft + Tt

Trang 12

Adjustment Example

ForecastActual Smoothed Smoothed IncludingMonth(t) Demand (At) Forecast, Ft Trend, Tt Trend, FITt

Trang 13

Adjustment Example

ForecastActual Smoothed Smoothed IncludingMonth(t) Demand (At) Forecast, Ft Trend, Tt Trend, FITt

= 2.4 + 10.4 = 12.8 units

Step 1: Forecast for Month 2

Trang 14

Adjustment Example

ForecastActual Smoothed Smoothed IncludingMonth(t) Demand (At) Forecast, Ft Trend, Tt Trend, FITt

= 72 + 1.2 = 1.92 units

Step 2: Trend for Month 2

Trang 15

Adjustment Example

ForecastActual Smoothed Smoothed IncludingMonth(t) Demand (At) Forecast, Ft Trend, Tt Trend, FITt

= 14.72 units

Step 3: Calculate FIT for Month 2

Trang 16

Adjustment Example

ForecastActual Smoothed Smoothed IncludingMonth(t) Demand (At) Forecast, Ft Trend, Tt Trend, FITt

Trang 17

Actual demand (At)

Forecast including trend (FITt)with = 2 and = 4

Trang 18

Fitting a trend line to historical data points to 

project into the medium to long­range

Linear trends can be found using the least squares  technique

y = a + bx^

where y = computed value of the variable to be predicted (dependent variable)

Trang 19

Actual observation

(y value)

Trend line, y = a + bx^

Trang 25

1. We always plot the data to insure a

linear relationship

2. We do not predict time periods far

beyond the database

3. Deviations around the least squares

line are assumed to be random

Trang 27

1. Find average historical demand for each season

2. Compute the average demand over all seasons

3. Compute a seasonal index for each season

4. Estimate next year’s total demand

5. Divide this estimate of total demand by the number

of seasons, then multiply it by the seasonal index for that season

Steps in the process:

Trang 29

Seasonal index = average 2005-2007 monthly demand

average monthly demand

= 90/94 = 957

Trang 34

0.97

0.96 Seasonal Indices

Trang 36

Used when changes in one or more independent  variables can be used to predict the changes in the 

Trang 40

4.0 – 3.0 – 2.0 – 1.0 –

Trang 42

n = number of data points

n - 2

Trang 43

Computationally, this equation is 

considerably easier to use

We use the standard error to set up  prediction intervals around the point 

estimate

n - 2

Trang 44

4.0 – 3.0 – 2.0 – 1.0 –

Trang 46

[νΣξ2 − (Σξ)2][νΣψ2 − (Σψ)2]

Trang 47

r = -1

Trang 50

y = 1.80 + 30x1 - 5.0x2^

In the Nodel example, including interest rates in the model gives the new  equation:

An improved correlation coefficient of r = .96 means this model does a better  job of predicting the change in construction sales

Sales = 1.80 + .30(6) ­ 5.0(.12) = 3.00 Sales = $3,000,000

Trang 51

Tracking Signal

Trang 52

in period i)

( |Αχτυαλ − Φορεχαστ|/ν) ∑

Trang 53

Upper control limit

Lower control limit

Time

Signal exceeding limit

Acceptable range

Trang 54

Cumulative

Trang 55

-10/10 = -1 -15/7.5 = -2 0/10 = 0 -10/10 = -1 +5/11 = +0.5 +35/14.2 = +2.5

The variation of the tracking signal between ­2.0 and +2.5 is within 

acceptable limits

Trang 56

It’s possible to use the computer to 

continually monitor forecast error and adjust  the values of the  α  and  β  coefficients used in  exponential smoothing to continually 

minimize forecast error

This technique is called adaptive smoothing

Trang 57

Developed at American Hardware Supply, focus  forecasting is based on two principles:

1. Sophisticated forecasting models are not

always better than simple ones

2. There is no single technique that should be

used for all products or services

This approach uses historical data to test multiple forecasting models for  individual items

The forecasting model with the lowest error is then used to forecast the next  demand

Trang 61

absolute value of the individual forecast errors divided 

by the number of periods

Trang 62

from the cumulative forecast.

Trang 63

Seasonal Index =   period average demand

avg. demand for all periods

Trang 64

End of Lecture 18

Ngày đăng: 21/09/2020, 14:10

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN