Divide this estimate of total demand by the number

Một phần của tài liệu Lecture Principle of inventory and material management - Lecture 18 (Trang 27 - 57)

index for that season

Steps in the process:

Seasonal Index Example

Jan 80 85 105 90 94

Feb 70 85 85 80 94

Mar 80 93 82 85 94

Apr 90 95 115 100 94

May 113 125 131 123 94

Jun 110 115 120 115 94

Jul 100 102 113 105 94

Aug 88 102 110 100 94

Sept 85 90 95 90 94

Oct 77 78 85 80 94

Nov 75 72 83 80 94

Dec 82 78 80 80 94

Demand Average Average Seasonal Month 2005 2006 2007 2005-2007 Monthly Index

Seasonal Index Example

Jan 80 85 105 90 94

Feb 70 85 85 80 94

Mar 80 93 82 85 94

Apr 90 95 115 100 94

May 113 125 131 123 94

Jun 110 115 120 115 94

Jul 100 102 113 105 94

Aug 88 102 110 100 94

Sept 85 90 95 90 94

Oct 77 78 85 80 94

Nov 75 72 83 80 94

Dec 82 78 80 80 94

Demand Average Average Seasonal Month 2005 2006 2007 2005-2007 Monthly Index

0.957 Seasonal index = average 2005-2007 monthly demand

average monthly demand

= 90/94 = .957

Seasonal Index Example

Jan 80 85 105 90 94 0.957

Feb 70 85 85 80 94 0.851

Mar 80 93 82 85 94 0.904

Apr 90 95 115 100 94 1.064

May 113 125 131 123 94 1.309

Jun 110 115 120 115 94 1.223

Jul 100 102 113 105 94 1.117

Aug 88 102 110 100 94 1.064

Sept 85 90 95 90 94 0.957

Oct 77 78 85 80 94 0.851

Nov 75 72 83 80 94 0.851

Dec 82 78 80 80 94 0.851

Demand Average Average Seasonal Month 2005 2006 2007 2005-2007 Monthly Index

Seasonal Index Example

Jan 80 85 105 90 94 0.957

Feb 70 85 85 80 94 0.851

Mar 80 93 82 85 94 0.904

Apr 90 95 115 100 94 1.064

May 113 125 131 123 94 1.309

Jun 110 115 120 115 94 1.223

Jul 100 102 113 105 94 1.117

Aug 88 102 110 100 94 1.064

Sept 85 90 95 90 94 0.957

Oct 77 78 85 80 94 0.851

Nov 75 72 83 80 94 0.851

Dec 82 78 80 80 94 0.851

Demand Average Average Seasonal Month 2005 2006 2007 2005-2007 Monthly Index

Expected annual demand = 1,200

Jan 1,20012 x .957 = 96

Feb 1,20012 x .851 = 85

Forecast for 2008

Seasonal Index Example

140 – 130 – 120 – 110 – 100 – 90 – 80 – 70 –

| | | | | | | | | | | |

J F M A M J J A S O N D

Time

Demand

2008 Forecast 2007 Demand 2006 Demand 2005 Demand

San Diego Hospital

10,200 – 10,000 – 9,800 – 9,600 – 9,400 – 9,200 –

9,000 –| | | | | | | | | | | |

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

67 68 69 70 71 72 73 74 75 76 77 78

Month

Inpatient Days

9530

9551

9573

9594

9616

9637

9659

9680

9702

9724

9745

9766 Trend Data

San Diego Hospital

1.06 – 1.04 – 1.02 – 1.00 – 0.98 – 0.96 – 0.94 –

0.92 –| | | | | | | | | | | |

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

67 68 69 70 71 72 73 74 75 76 77 78

Month

Index for Inpatient Day

s1.04

1.02 1.01

0.99

1.03 1.04

1.00

0.98 0.97

0.99

0.97 0.96

Seasonal Indices

San Diego Hospital

10,200 – 10,000 – 9,800 – 9,600 – 9,400 – 9,200 –

9,000 –| | | | | | | | | | | |

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

67 68 69 70 71 72 73 74 75 76 77 78

Month

Inpatient Days 9911

9265 9764

9520 9691

9411 9949

9724

9542

9355 10068

9572 Combined Trend and Seasonal Forecast

Associative Forecasting

Used when changes in one or more independent  variables can be used to predict the changes in the 

dependent variable

Most common technique is linear  regression analysis

We apply this technique just as we did in the  time series example

Associative Forecasting

Forecasting an outcome based on predictor  variables using the least squares technique

y = a + bx^

where y = computed value of the variable to be predicted (dependent variable)

a = y-axis intercept

b = slope of the regression line x = the independent variable though to predict the value of the

dependent variable

^

Associative Forecasting Example

Sales Local Payroll ($ millions), y ($ billions), x

2.0 1

3.0 3

2.5 4

2.0 2

2.0 1

3.5 7

4.0 – 3.0 – 2.0 – 1.0 –

| | | | | | |

0 1 2 3 4 5 6 7

Sales

Area payroll

Associative Forecasting Example

Sales, y Payroll, x x2 xy

2.0 1 1 2.0

3.0 3 9 9.0

2.5 4 16 10.0

2.0 2 4 4.0

2.0 1 1 2.0

3.5 7 49 24.5

∑y = 15.0 ∑x = 18 ∑x2 = 80 ∑xy = 51.5

x = ∑x/6 = 18/6 = 3 y = ∑y/6 = 15/6 = 2.5

b = = = .25∑xy - nxy

∑x2 - nx2

51.5 - (6)(3)(2.5) 80 - (6)(32)

a = y - bx = 2.5 - (.25)(3) = 1.75

Associative Forecasting Example

4.0 – 3.0 – 2.0 – 1.0 –

| | | | | | |

0 1 2 3 4 5 6 7

Sales

Area payroll

y = 1.75 + .25x^ Sales = 1.75 + .25(payroll)

If payroll next year is  estimated to be $6 billion,  then:

Sales = 1.75 + .25(6) Sales = $3,250,000

3.25

Standard Error of the Estimate

þ A forecast is just a point estimate of a future value

þ This point is actually the mean of a probability distribution

4.0 – 3.0 – 2.0 – 1.0 –

| | | | | | |

0 1 2 3 4 5 6 7

Sales

Area payroll 3.25

Standard Error of the Estimate

where y = y-value of each data point

yc = computed value of the dependent variable, from the

regression equation

n = number of data points

Sy,x = ∑(y - yc)2 n - 2

Standard Error of the Estimate

Computationally, this equation is  considerably easier to use

We use the standard error to set up  prediction intervals around the point 

estimate

Sy,x = ∑y2 - a∑y - b∑xy n - 2

Standard Error of the Estimate

4.0 – 3.0 – 2.0 – 1.0 –

| | | | | | |

0 1 2 3 4 5 6 7

Sales

Area payroll 3.25

Sy,x = =∑y2 - a∑y - b∑xy n - 2

39.5 - 1.75(15) - .25(51.5) 6 - 2

Sy,x =  .306

The standard error of the  estimate is $306,000 in sales

þ How strong is the linear relationship between the  variables?

þ Correlation does not necessarily imply causality!

þ Coefficient of correlation, r, measures degree of  association

þ Values range from ­1 to +1

Correlation

Correlation Coefficient

r = n Σξψ − ΣξΣψ

[νΣξ2 − (Σξ)2][νΣψ2 − (Σψ)2]

Correlation Coefficient

r = n Σξψ − ΣξΣψ

[νΣξ2 − (Σξ)2][νΣψ2 − (Σψ)2]

y

(a) Perfect x

positive correlation:

r = +1

y

(b) Positive x

correlation:

0 < r < 1

y

(c) No x

correlation:

r = 0

y

(d) Perfect x

negative correlation:

r = -1

þ Coefficient of Determination, r2, measures the 

percent of change in y predicted by the change in x

þ Values range from 0 to 1

þ Easy to interpret

Correlation

For the Nodel Construction example:

r = .901 r2 = .81

Multiple Regression Analysis

If more than one independent variable is to be used in  the model, linear regression can be extended to 

multiple regression to accommodate several  independent variables

y = a + b1x1 + b2x2 … ^

Computationally, this is quite complex and  generally done on the computer

Multiple Regression Analysis

y = 1.80 + .30x1 - 5.0x2^

In the Nodel example, including interest rates in the model gives the new  equation:

An improved correlation coefficient of r = .96 means this model does a better  job of predicting the change in construction sales

Sales = 1.80 + .30(6) ­ 5.0(.12) = 3.00 Sales = $3,000,000

þ Measures how well the forecast is predicting  actual values

þ Ratio of running sum of forecast errors (RSFE) to  mean absolute deviation (MAD)

þ Good tracking signal has low values

þ If forecasts are continually high or low, the forecast  has a bias error

Monitoring and Controlling Forecasts

Tracking Signal

Monitoring and Controlling Forecasts

Tracking

signal RSFE

= MAD

Tracking

signal =

∑(Actual demand in period i -

Forecast demand in period i)

( |Αχτυαλ − Φορεχαστ|/ν) ∑

Tracking Signal

Tracking signal +

0 MADs –

Upper control limit

Lower control limit

Time

Signal exceeding limit

Acceptable range

Tracking Signal Example

Cumulative Absolute Absolute

Actual Forecast Forecast Forecast

Qtr Demand Demand Error RSFE Error Error MAD

1 90 100 -10 -10 10 10 10.0

2 95 100 -5 -15 5 15 7.5

3 115 100 +15 0 15 30 10.0

4 100 110 -10 -10 10 40 10.0

5 125 110 +15 +5 15 55 11.0

6 140 110 +30 +35 30 85 14.2

Cumulative Absolute Absolute

Actual Forecast Forecast Forecast

Qtr Demand Demand Error RSFE Error Error MAD

1 90 100 -10 -10 10 10 10.0

2 95 100 -5 -15 5 15 7.5

3 115 100 +15 0 15 30 10.0

4 100 110 -10 -10 10 40 10.0

5 125 110 +15 +5 15 55 11.0

6 140 110 +30 +35 30 85 14.2

Tracking Signal Example

Tracking Signal (RSFE/MAD)

-10/10 = -1 -15/7.5 = -2

0/10 = 0 -10/10 = -1 +5/11 = +0.5 +35/14.2 = +2.5

The variation of the tracking signal between ­2.0 and +2.5 is within  acceptable limits

Adaptive Forecasting

It’s possible to use the computer to 

continually monitor forecast error and adjust  the values of the α and β coefficients used in  exponential smoothing to continually 

minimize forecast error

This technique is called adaptive smoothing

Focus Forecasting

Developed at American Hardware Supply, focus  forecasting is based on two principles:

Một phần của tài liệu Lecture Principle of inventory and material management - Lecture 18 (Trang 27 - 57)

Tải bản đầy đủ (PDF)

(64 trang)