5 The critical load case is identified as the case yielding the lowest safety factor about the design axis Through inspection: Load case 14 is critical.. Design of column section for U
Trang 1General column design by PROKON (GenCol Ver W3.0.12 - 12 Dec 2016)
Design code : Eurocode 2 - 2004
General design parameters:
(1) The general conditions of clause 5.8.8.2 are applicable
(2) The specified design axial loads include
the self-weight of the column
(3) The design axial loads are taken constant
over the height of the column
Design approach:
The column is designed using the following procedure:
(1) The column design charts are constructed
(2) The design axis and design ultimate moment are determined
(3) The design axial force and moment capacity is checked on
the relevant design chart
(4) The procedure is repeated for each load case
(5) The critical load case is identified as the case yielding the lowest
safety factor about the design axis
Through inspection:
Load case 14 is critical
Check column slenderness:
End fixity and bracing for bending about the Design axis:
The column is unbraced
Effective length factor ß = 0.75
Effective column height:
Trang 2Minimum Moments for Design:
Check for mininum eccentricity:
Check that the eccentricity exceeds the minimum in the plane of bending:
Trang 4The column is bent in double curvature about the X-X axis:
M1 = Smaller initial end moment = -8847.0 kNm
M2 = Larger initial end moment = 9228.6 kNm
Trang 5The column is bent in double curvature about the Y-Y axis:
M1 = Smaller initial end moment = -15192.4 kNm
M2 = Larger initial end moment = 24698.1 kNm
Design ultimate load and moment:
Design axial load:
Pu = 7209.4 kN
Trang 7Design of column section for ULS:
The column is checked for applied moment about the design axis
Through inspection: the critical section lies at the bottom end of the column
The design axis for the critical load case 14 lies at an angle of 249.51° to the X-axis
The safety factor for the critical load case 14 is 2.46
For bending about the design axis:
Moment distribution along the height of the column for bending about the design axis:
The final design moments were calculated as the vector sum of the X- and Y- moments
of the critical load case This also determined the design axis direction
At the top, Mx = 17724.8 kNm
Near mid-height, Mx = 10690.6 kNm
At the bottom, Mx = 26510.1 kNm
Trang 8Stresses at the bottom end of the column for the critical load case 14
Summary of design calculations:
Design table for critical load case:
Trang 9Load case Axis N (kN) M1 (kNm) M2 (kNm) Mi (kNm) Madd (kNm) Design M (kNm) M' (kNm) Safetyfactor
-291.5 -102.9
-236.7 -81.4
0.0 0.0 Top
505.5 178.5 536.0 12.379
X-X
Y-Y 11401.6
-2038.8 2641.8
3084.3 -3790.8
1233.7 -1516.3
0.0 0.0 Bottom
3228.2 3967.7 5115.1 9.632
X-X
Y-Y 11513.3
-2998.9 1577.7
5116.1 -2429.4
2046.4 -971.7
0.0 0.0 Bottom
5324.1 2528.1 5893.9 9.246
X-X
Y-Y 10859.3
2418.8 -1782.0
-5414.5 2330.9
-2281.2 932.4
0.0 0.0 Bottom
5614.0 2416.8 6112.1 9.621
X-X
Y-Y 10970.9
1458.7 -2846.2
-3382.7 3692.4
-1446.1 1477.0
0.0 0.0 Bottom
3530.9 3854.2 5227.1 9.811
X-X
Y-Y 11737.3
530.9 7847.1
-662.7 -11529.2
-265.1 -4611.7
0.0 0.0 Bottom
682.4 11763.7 11776.2 6.139
X-X
Y-Y 12601.7
-758.2 4880.2
852.6 -7305.9
341.1 -2922.3
0.0 0.0 Bottom
881.8 7556.2 7607.5 7.526
X-X
Y-Y 9134.8
183.8 -5081.6
-1130.0 7206.8
-604.5 2882.7
0.0 0.0 Bottom
1158.4 7387.3 7477.6 9.038
X-X
Y-Y 9999.2
88.3 -8048.5
-808.3 11430.2
-449.7 4572.1
0.0 0.0 Bottom
822.4 11629.7 11658.7 6.777
X-X
Y-Y 7758.5
8482.4 12159.3
-16272.0 -17953.4
-6508.8 -7181.4
0.0 0.0 Bottom
16376.2 18068.4 24385.4 3.026
X-X
Y-Y 10773.3
-8993.4 -12336.6
16060.4 17862.3
6424.2 7144.9
0.0 0.0 Bottom
16204.5 18022.5 24236.3 3.217
X-X
Y-Y 7758.5
8482.4 12159.3
-16272.0 -17953.4
-6508.8 -7181.4
0.0 0.0 Bottom
16376.2 18068.4 24385.4 3.026
X-X
Y-Y 10773.3
-8993.4 -12336.6
16060.4 17862.3
6424.2 7144.9
0.0 0.0 Bottom
16204.5 18022.5 24236.3 3.217
X-X
Y-Y 7209.4
8847.0 15192.4
-9228.6 -24698.1
-3691.4 -9879.2
0.0 0.0 Bottom
9279.1 24833.2 26510.1 2.464
X-X
Y-Y 11322.4
9017.0 -15369.7
-9358.0 24607.0
-3743.2 9842.8
0.0 0.0 Bottom
9475.8 24819.6 26433.5 2.788
X-X
Y-Y 7209.4
8847.0 15192.4
-9228.6 -24698.1
-3691.4 -9879.2
0.0 0.0 Bottom
9279.1 24833.2 26510.1 2.464
X-X
Y-Y 11322.4
9017.0 -15369.7
-9358.0 24607.0
-3743.2 9842.8
0.0 0.0 Bottom
9475.8 24819.6 26433.5 2.788
X-X
Y-Y 7758.5
8482.4 12159.3
-16272.0 -17953.4
-6508.8 -7181.4
0.0 0.0 Bottom
16376.2 18068.4 24385.4 3.026
X-X
Y-Y 10773.3
-8993.4 -12336.6
16060.4 17862.3
6424.2 7144.9
0.0 0.0 Bottom
16204.5 18022.5 24236.3 3.217
X-X
Y-Y 7758.5
8482.4 12159.3
-16272.0 -17953.4
-6508.8 -7181.4
0.0 0.0 Bottom
16376.2 18068.4 24385.4 3.026
X-X
Y-Y 10773.3
-8993.4 -12336.6
16060.4 17862.3
6424.2 7144.9
0.0 0.0 Bottom
16204.5 18022.5 24236.3 3.217
X-X
Y-Y 7209.4
8847.0 15192.4
-9228.6 -24698.1
-3691.4 -9879.2
0.0 0.0 Bottom
9279.1 24833.2 26510.1 2.464
X-X
Y-Y 11322.4
9017.0 -15369.7
-9358.0 24607.0
-3743.2 9842.8
0.0 0.0 Bottom
9475.8 24819.6 26433.5 2.788
X-X
Y-Y 7209.4
8847.0 15192.4
-9228.6 -24698.1
-3691.4 -9879.2
0.0 0.0 Bottom
9279.1 24833.2 26510.1 2.464
X-X
Y-Y 11322.4
9017.0 -15369.7
-9358.0 24607.0
-3743.2 9842.8
0.0 0.0 Bottom
9475.8 24819.6 26433.5 2.788
Trang 10Load case 14 is critical.
Trang 11General column design by PROKON (GenCol Ver W3.0.12 - 12 Dec 2016)
Design code : Eurocode 2 - 2004
General design parameters:
(1) The general conditions of clause 5.8.8.2 are applicable
(2) The specified design axial loads include
the self-weight of the column
(3) The design axial loads are taken constant
over the height of the column
Design approach:
The column is designed using the following procedure:
(1) The column design charts are constructed
(2) The design axis and design ultimate moment are determined
(3) The design axial force and moment capacity is checked on
the relevant design chart
(4) The procedure is repeated for each load case
(5) The critical load case is identified as the case yielding the lowest
safety factor about the design axis
Through inspection:
Load case 11 is critical
Check column slenderness:
End fixity and bracing for bending about the Design axis:
The column is unbraced
Effective length factor ß = 0.75
Effective column height:
Trang 12Minimum Moments for Design:
Check for mininum eccentricity:
Check that the eccentricity exceeds the minimum in the plane of bending:
Trang 14The column is bent in double curvature about the X-X axis:
M1 = Smaller initial end moment = -16634.2 kNm
M2 = Larger initial end moment = 22300.2 kNm
Trang 15The column is bent in double curvature about the Y-Y axis:
M1 = Smaller initial end moment = -16375.9 kNm
M2 = Larger initial end moment = 22998.6 kNm
Design ultimate load and moment:
Design axial load:
Pu = 45239.7 kN
Trang 17Design of column section for ULS:
The column is checked for applied moment about the design axis
Through inspection: the critical section lies at the bottom end of the column
The design axis for the critical load case 11 lies at an angle of 45.88° to the X-axis
The safety factor for the critical load case 11 is 1.14
For bending about the design axis:
Moment distribution along the height of the column for bending about the design axis:
The final design moments were calculated as the vector sum of the X- and Y- moments
of the critical load case This also determined the design axis direction
At the top, Mx = 24247.2 kNm
Near mid-height, Mx = 13718.8 kNm
At the bottom, Mx = 32939.7 kNm
Trang 18Stresses at the bottom end of the column for the critical load case 11
Summary of design calculations:
Design table for critical load case:
Trang 19Load case Axis N (kN) M1 (kNm) M2 (kNm) Mi (kNm) Madd (kNm) Design M (kNm) M' (kNm)
Safety factor Load case 1
-62.5 448.7
-41.6 179.5
0.0 0.0 Bottom
196.8 1129.6 933.7 2.900
X-X
Y-Y 36036.5
4684.7 5606.0
-6106.0 -7359.9
-2442.4 -2943.9
0.0 0.0 Bottom
6566.2 7914.6 10283.7 2.203
X-X
Y-Y 38641.2
2861.8 3640.3
-3788.5 -4633.0
-1515.4 -1853.2
0.0 0.0 Bottom
4277.7 5231.3 6757.6 2.280
X-X
Y-Y 29271.7
-2981.4 -2756.9
3765.4 4141.6
1506.1 1656.6
0.0 0.0 Bottom
4159.2 4574.8 6182.8 2.936
X-X
Y-Y 31876.4
-4804.3 -4722.6
6082.8 6868.5
2433.1 2747.4
0.0 0.0 Bottom
6505.5 7345.7 9812.3 2.471
X-X
Y-Y 11596.5
6360.6 4938.7
-8503.3 -5372.0
-3401.3 -2148.8
0.0 0.0 Bottom
8699.4 5495.9 10290.0 3.746
X-X
Y-Y 20004.1
4014.2 3315.8
-5410.4 -3536.9
-2164.1 -1414.8
0.0 0.0 Bottom
5745.2 3755.8 6864.0 3.763
X-X
Y-Y 46223.9
-4123.2 -2460.2
5382.1 3046.3
2152.8 1218.5
0.0 0.0 Bottom
6186.6 3501.7 7108.9 1.988
X-X
Y-Y 54631.5
-6469.6 -4083.0
8475.0 4881.4
3390.0 1952.6
0.0 0.0 Bottom
9421.8 5426.7 10872.9 1.620
X-X
Y-Y 11712.8
16555.6 17100.0
-22335.8 -23443.1
-8934.3 -9377.2
0.0 0.0 Bottom
22497.4 23612.7 32614.3 1.229
X-X
Y-Y 45239.7
-16634.2 -16375.9
22300.2 22998.6
8920.1 9199.4
0.0 0.0 Bottom
22930.1 23648.2 32939.7 1.143
X-X
Y-Y 11712.8
16555.6 17100.0
-22335.8 -23443.1
-8934.3 -9377.2
0.0 0.0 Bottom
22497.4 23612.7 32614.3 1.229
X-X
Y-Y 45239.7
-16634.2 -16375.9
22300.2 22998.6
8920.1 9199.4
0.0 0.0 Bottom
22930.1 23648.2 32939.7 1.143
X-X
Y-Y 4777.1
16045.2 14968.8
-22078.0 -18276.9
-8831.2 -7310.8
0.0 0.0 Bottom
22151.6 18337.8 28757.1 1.257
X-X
Y-Y 52175.4
-16123.9 -14244.6
22042.4 17832.4
8817.0 7133.0
0.0 0.0 Bottom
22853.7 18488.7 29396.0 1.148
X-X
Y-Y 4777.1
16045.2 14968.8
-22078.0 -18276.9
-8831.2 -7310.8
0.0 0.0 Bottom
22151.6 18337.8 28757.1 1.257
X-X
Y-Y 52175.4
-16123.9 -14244.6
22042.4 17832.4
8817.0 7133.0
0.0 0.0 Bottom
22853.7 18488.7 29396.0 1.148
X-X
Y-Y 11712.8
16555.6 17100.0
-22335.8 -23443.1
-8934.3 -9377.2
0.0 0.0 Bottom
22497.4 23612.7 32614.3 1.229
X-X
Y-Y 45239.7
-16634.2 -16375.9
22300.2 22998.6
8920.1 9199.4
0.0 0.0 Bottom
22930.1 23648.2 32939.7 1.143
X-X
Y-Y 11712.8
16555.6 17100.0
-22335.8 -23443.1
-8934.3 -9377.2
0.0 0.0 Bottom
22497.4 23612.7 32614.3 1.229
X-X
Y-Y 45239.7
-16634.2 -16375.9
22300.2 22998.6
8920.1 9199.4
0.0 0.0 Bottom
22930.1 23648.2 32939.7 1.143
X-X
Y-Y 4777.1
16045.2 14968.8
-22078.0 -18276.9
-8831.2 -7310.8
0.0 0.0 Bottom
22151.6 18337.8 28757.1 1.257
X-X
Y-Y 52175.4
-16123.9 -14244.6
22042.4 17832.4
8817.0 7133.0
0.0 0.0 Bottom
22853.7 18488.7 29396.0 1.148
X-X
Y-Y 4777.1
16045.2 14968.8
-22078.0 -18276.9
-8831.2 -7310.8
0.0 0.0 Bottom
22151.6 18337.8 28757.1 1.257
X-X
Y-Y 52175.4
-16123.9 -14244.6
22042.4 17832.4
8817.0 7133.0
0.0 0.0 Bottom
22853.7 18488.7 29396.0 1.148
Trang 20Load case 11 is critical.
Trang 21General column design by PROKON (GenCol Ver W3.0.12 - 12 Dec 2016)
Design code : Eurocode 2 - 2004
General design parameters:
(1) The general conditions of clause 5.8.8.2 are applicable
(2) The specified design axial loads include
the self-weight of the column
(3) The design axial loads are taken constant
over the height of the column
Design approach:
The column is designed using the following procedure:
(1) The column design charts are constructed
(2) The design axis and design ultimate moment are determined
(3) The design axial force and moment capacity is checked on
the relevant design chart
(4) The procedure is repeated for each load case
(5) The critical load case is identified as the case yielding the lowest
safety factor about the design axis
Through inspection:
Load case 15 is critical
Check column slenderness:
End fixity and bracing for bending about the Design axis:
The column is unbraced
Effective length factor ß = 0.75
Effective column height:
Trang 22Minimum Moments for Design:
Check for mininum eccentricity:
Check that the eccentricity exceeds the minimum in the plane of bending:
Trang 24The column is bent in double curvature about the X-X axis:
M1 = Smaller initial end moment = -27043.5 kNm
M2 = Larger initial end moment = 28953.9 kNm
Trang 25The column is bent in double curvature about the Y-Y axis:
M1 = Smaller initial end moment = -109715.3 kNm
M2 = Larger initial end moment = 120551.0 kNm
Design ultimate load and moment:
Design axial load:
Pu = 88413.9 kN
Trang 27Design of column section for ULS:
The column is checked for applied moment about the design axis
Through inspection: the critical section lies at the top end of the column
The design axis for the critical load case 15 lies at an angle of 256.15° to the X-axis
The safety factor for the critical load case 15 is 1.33
For bending about the design axis:
Moment distribution along the height of the column for bending about the design axis:
The final design moments were calculated as the vector sum of the X- and Y- moments
of the critical load case This also determined the design axis direction
At the top, Mx = 114767.4 kNm
Near mid-height, Mx = 51360.0 kNm
At the bottom, Mx = 125747.6 kNm
Trang 28Stresses at the top end of the column for the critical load case 15
2500 0 -2500 -5000 -7500 -10000
Summary of design calculations:
Design table for critical load case:
Trang 29Load case Axis N (kN) M1 (kNm) M2 (kNm) Mi (kNm) Madd (kNm) Design M (kNm) M' (kNm)
Safety factor Load case 1
-846.4 -831.2
-338.6 -332.5
0.0 0.0 Top
2201.7 2131.4 3004.2 2.349
X-X
Y-Y 88623.4
-4558.8 -597.2
6136.5 -740.2
2454.6 -683.0
0.0 0.0 Bottom
7900.6 1158.1 7937.9 2.386
X-X
Y-Y 89783.4
-8245.7 294.0
10796.7 -2409.6
4318.7 -1328.2
0.0 0.0 Bottom
12591.7 2913.3 12596.3 2.313
X-X
Y-Y 93507.1
9883.5 -1869.7
-12438.1 3880.4
-4975.2 1580.4
0.0 0.0 Top
14287.4 4563.9 12488.1 2.236
X-X
Y-Y 94667.1
6196.5 -978.6
-7777.9 2211.1
-3111.2 935.2
0.0 0.0 Top
9656.4 2847.4 8472.5 2.237
X-X
Y-Y 92541.6
-17843.3 75427.6
18572.9 -79726.7
7429.2 -31890.7
0.0 0.0 Bottom
19015.5 81532.9 83549.9 1.533
X-X
Y-Y 96446.8
-11123.9 46856.3
11584.4 -49693.0
4633.8 -19877.2
0.0 0.0 Bottom
12047.4 51575.3 52851.8 1.770
X-X
Y-Y 82311.4
9585.4 -45569.5
-10038.4 48290.7
-4015.3 19316.3
0.0 0.0 Top
10392.5 49905.4 48308.3 2.030
X-X
Y-Y 86216.6
16304.8 -74140.8
-17026.9 78324.4
-6810.8 31329.8
0.0 0.0 Top
17412.9 80012.5 77795.1 1.653
X-X
Y-Y 64955.6
27397.4 49354.6
-35113.3 -55180.1
-14045.3 -22072.0
0.0 0.0 Top
35810.7 56276.1 57748.1 2.472
X-X
Y-Y 88796.0
-26169.0 -48540.3
33913.5 54240.3
13565.4 21696.1
0.0 0.0 Bottom
34855.0 55746.1 65745.7 1.919
X-X
Y-Y 64955.6
27397.4 49354.6
-35113.3 -55180.1
-14045.3 -22072.0
0.0 0.0 Top
35810.7 56276.1 57748.1 2.472
X-X
Y-Y 88796.0
-26169.0 -48540.3
33913.5 54240.3
13565.4 21696.1
0.0 0.0 Bottom
34855.0 55746.1 65745.7 1.919
X-X
Y-Y 65337.7
28271.9 110529.6
-30153.7 -121490.8
-12061.5 -48596.3
0.0 0.0 Bottom
30468.5 122759.1 126483.7 1.349
X-X
Y-Y 88413.9
-27043.5 -109715.3
28953.9 120551.0
11581.6 48220.4
0.0 0.0 Top
29366.9 122270.4 114767.4 1.334
X-X
Y-Y 65337.7
28271.9 110529.6
-30153.7 -121490.8
-12061.5 -48596.3
0.0 0.0 Bottom
30468.5 122759.1 126483.7 1.349
X-X
Y-Y 88413.9
-27043.5 -109715.3
28953.9 120551.0
11581.6 48220.4
0.0 0.0 Top
29366.9 122270.4 114767.4 1.334
X-X
Y-Y 64955.6
27397.4 49354.6
-35113.3 -55180.1
-14045.3 -22072.0
0.0 0.0 Top
35810.7 56276.1 57748.1 2.472
X-X
Y-Y 88796.0
-26169.0 -48540.3
33913.5 54240.3
13565.4 21696.1
0.0 0.0 Bottom
34855.0 55746.1 65745.7 1.919
X-X
Y-Y 64955.6
27397.4 49354.6
-35113.3 -55180.1
-14045.3 -22072.0
0.0 0.0 Top
35810.7 56276.1 57748.1 2.472
X-X
Y-Y 88796.0
-26169.0 -48540.3
33913.5 54240.3
13565.4 21696.1
0.0 0.0 Bottom
34855.0 55746.1 65745.7 1.919
X-X
Y-Y 65337.7
28271.9 110529.6
-30153.7 -121490.8
-12061.5 -48596.3
0.0 0.0 Bottom
30468.5 122759.1 126483.7 1.349
X-X
Y-Y 88413.9
-27043.5 -109715.3
28953.9 120551.0
11581.6 48220.4
0.0 0.0 Top
29366.9 122270.4 114767.4 1.334
X-X
Y-Y 65337.7
28271.9 110529.6
-30153.7 -121490.8
-12061.5 -48596.3
0.0 0.0 Bottom
30468.5 122759.1 126483.7 1.349
X-X
Y-Y 88413.9
-27043.5 -109715.3
28953.9 120551.0
11581.6 48220.4
0.0 0.0 Top
29366.9 122270.4 114767.4 1.334