Tìm giá trị nhỏ nhất của khoảng cách từ điểm N đến mặt phẳng P... Câu 14: Người ta cần cắt một khối lập phương thành hai khối đa diện bởi một mặt phẳng đi qua A như hình vẽ sao cho phần
Trang 1Đề thi thử THPTQG môn Toán - Sở GD&ĐT Hải Phòng Câu 1: Cho biểu thức P 5 x x3 3 2 x , với x > 0 Mệnh đề nào dưới đây đúng?
A
31
10
37 15
23 30
53 30
Px
Câu 2: Gọi z1, z2 là hai nghiệm phức của phương trình z22z 2 0 z Tính giá trị của biểu thức P2 z1z2 z1z2
A P2 2 2 B P 2 4 C P 6 D P 3
Câu 3: Tìm đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số y 2x 1
x 1
A x 1, y 1
2
2
Câu 4: Trong các hàm số dưới đây, hàm số nào có đồ thị đi qua điểm M(1;0)?
A yx 1 x 2. B yx33x23
C yx43x22 D y 2x2 2
Câu 5: Tìm số nghiệm nguyên của bất phương trình 2 3
3 log log x 3 0
Câu 6: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu
S : x y z 2x 4y 4z và mặt phẳng 0 P : x 2y 2z Viết phương trình mặt 0 phẳng (Q) biết mặt phẳng (Q) song song với mặt phẳng (P) và tiếp xúc với mặt cầu (S)
A Q : x 2y 2z 18 hoặc 0 Q : x 2y 2z 36 0
B Q : x 2y 2z 18 0
C Q : x 2y 2z 18 hoặc 0 Q : x 2y 2z 0
D Q : x 2y 2z 8 0
Câu 7: Đường cong hình bên là đồ thị hàm số
3 2
yax bx cx d
Xét các mệnh đều sau:
(I) a 1 (II) ad 0
(III) d 1 (IV) a c b 1
Tìm số mệnh đề sai
Trang 2A 1 B 3
Câu 8: Cho các số thực dương x, y thỏa mãn log x 2y log x logy Tìm giá trị nhỏ nhất của biểu thức
x y 4
1 2 y 1 x
P e e
A
8 5 min Pe B
1 2 min Pe C
5 8 min Pe D min P e
Câu 9: Bác An mua nhà trị giá 500 triệu đồng theo phương thức trả góp Nếu cuối mỗi tháng
bắt đầu từ tháng thứ nhất bác An trả 10 triệu đồng và chịu lãi số tiền chưa trả là 0,5%/tháng Hỏi ít nhất bao nhiêu tháng bác An có thể trả hết số tiền trên?
Câu 10: Tìm tất cả các giá trị thực của tham số m để hàm số y mx 4
nghịch biến trên
khoảng 0;
A 0 m 2 B 2 m 2 C 0 m 2 D 0 m 2
Câu 11: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x 2y 2z 1 0 và
đường thẳng d :x 1 y 1 z
Gọi I là giao điểm của d và (P), M là điểm trên đường thẳng d sao cho IM = 9 Tính khoảng cách từ điểm M đến mặt phẳng (P)
A d M, P 3 2 B d M, P 4
6
cos x sinx
sinx
A S 23
24
24
24
Câu 13: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x 2y 2z 18 , M là 0 điểm di chuyển trên mặt phẳng (P); N là điểm nằm trên tia OM sao cho OM.ON 24 Tìm giá trị nhỏ nhất của khoảng cách từ điểm N đến mặt phẳng (P)
A Mind N, P 6 B Mind N, P 4
C Mind N, P 2 D Mind N, P 0
Trang 3Câu 14: Người ta cần cắt một khối lập phương thành
hai khối đa diện bởi một mặt phẳng đi qua A (như
hình vẽ) sao cho phần thể tích của khối đa diện chứa
điểm B bằng một nửa thể tích của khối đa diện còn
lại Tính tỉ số k CN
CC '
A k 1
3
3
C k 3
4
2
Câu 15: Cho hình nón có bán kính đáy bằng 3 và chiều cao bằng 4 Tính diện tích xung
quanh S của hình nón đó
A S 60 B S 15 C S 20 D S 25
Câu 16: Tính diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số y x , yx2 2
A S 11
2
3
3
Câu 17: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 2;5;0 , B 2;7;7 Tìm tọa
độ của véc tơ AB
A AB0; 2; 7 B AB4;12;7 C AB0; 2; 7 D AB 0;1;7
2
Câu 18: Một sợi dây kim loại dài 1m được cắt thành hai đoạn Đoạn dây thứ nhất có độ dài l1
được uốn thành hình vuông, đoạn dây thứ hai có độ dài l2 uốn thành đường tròn Tính tỉ số 1
2
l
k
l
để tổng diện tích hình vuông và hình tròn là nhỏ nhất
A k
4
2
4
Câu 19: Cho hàm số y = f(x) liên tục trên và có bảng xét dấu của f'(x) như sau
x 2
Tìm số cực trị của hàm số y = f(x)
Câu 20: Tìm phần thực và phần ảo của số phức z 4 3i
Trang 4A Phần thực là -4, phần ảo là 3 B Phần thực là -4, phần ảo là 3i
C Phần thực là 4, phần ảo là 3i D Phần thực là 3, phần ảo là -4i
Câu 21: Cho hình chóp S.ABC có SASBSC3, AC2; ABC là tam giác vuông cân tại
B
Tính thể tích V của khối chóp S.ABC
A V 2 7
3
3
Câu 22: Người ta làm một chiếc phao bơi như hình vẽ (với bề mặt có được bằng cách quay
đường tròn (C) quanh trục d) Biết rằng OI = 30cm, R = 5cm Tính thể tích V của chiếc phao
Câu 23: Tính tổng S của các nghiệm của phương trình 3 3 1
3
log xlog x 1 log 60
A S 5. B S 1. C S 1 D S 3.
Câu 24: Cho khối tứ diện đều có cạnh bằng a Tính tổng diện tích S của các mặt của khối tứ
diện đó
A
2
4
Câu 25: Có một miếng tôn hình tam giác
ABC đều cạnh 3dm (như hình vẽ) Gọi K
là trung điểm của BC Người ta dùng
compa có tâm là A và bán kính AK vạch
cung tròn MN (M, N theo thứ tự thuộc
cạnh AB và AC) rồi cắt miếng tôn theo cung tròn đó Lấy phần hình quạt người ta gò sao cho cạnh AM và AN trùng nhau thành một cái phểu hình nón không đáy với đỉnh A Tính thể tích
V của các phểu
Trang 5A 141 3
64
64
C 3 3 3
32
32
Câu 26: Tìm tất cả các khoảng đồng biến của hàm số yx33x2
A và ; 1 1; B ;1
Câu 27: Hàm số y = f(x) xác định trên \ 1;1 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ
x
1
f(x) 2
2
Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có 3 nghiệm thực phân biệt
A m2; B m ; 2 C m 2; 2 D m 2; 2
Câu 28: Cho hình chóp tam giác đều S.ABC có AB = a, cạnh bên SA a 6
3
Tính thể tích
V của khối chóp S.ABC
A
3
a
24
3 a
4
3
36
3 a
12
Câu 29: Tìm điểm M biểu diễn số phức liên hợp của số phức z 3 2i
A M 3; 2 B M 3; 2 C M3; 2 D M 2; 3
Câu 30: Tìm nguyên hàm của hàm số y2x
A
x
x 1
C
x
ln 2
D 2 dxx 2x C
Trang 6Câu 31: Gọi A, B, C là các điểm biểu diễn các số phức z1, z2, z3 là nghiệm của phương trình
3 2
z 6z 12z 7 0 Tính diện tích S của tam giác ABC
A S 3 3
2
4
Câu 32: Tìm tập nghiệm S của phương trình 2x 1 8
A S 1 B S 2 C S 4 D S 1
Câu 33: Trong các mệnh đề sau, hãy xác định mệnh đề đúng?
A z z , z B z z , z
C z 2z , z D z 2z , z
Câu 34: Gọi M, m theo thứ tự là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
2
y
x 1
trên đoạn 2;0 Tính P = M + m
A P 13
3
B P 5 C P 3 D P 1.
Câu 35: Cho hàm số yx42x2 Hãy chọn mệnh đề đúng 2
A Hàm số đạt cực đại tại điểm x = 1
B Hàm số đạt cực tiểu tại điểm x = 0
C Hàm số đạt cực đại tại điểm x = -1
D Hàm số đạt cực tiểu tại điểm x = -1
Câu 36: Cho a là số thực dương và khác 1 Mệnh đề nào sau đây là sai?
A loga x log x log y, xa a 0, y 0
y
2
log x 2 log x, x 0
C loga x.y log x log y, xa a 0, y D 0
a
1 log a
log 10
Câu 37: Có bao nhiêu số phức z thỏa mãn điều kiện iz i 1 2
z 1 z 2i
Câu 38: Một hình trụ có bán kính đáy bằng 3, chiều cao bằng 2 3 và gọi (S) là mặt cầu đi qua hai đường tròn đáy của hình trụ Tính diện tích mặt cầu (S)
A 6 B 8 6 C 24 D 6 3
Trang 7Câu 39: Gọi S là diện tích của hình phẳng giới hạn bởi các đồ thị hàm số 2
yx và 3
y4x Xác định mệnh đề đúng
A
3
2
1
2 1
S x 4x3 dx
2 1
3 2 1
S x 4x3 dx
Câu 40: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa trục Oz
và đi qua điểm M(1;2;1)
A P : 2x y 0 B P : x 2y 0
C P : x z 0 D P : y 2z 0
Câu 41: Cho f(x), g(x) là các hàm số có đạo hàm liên tục trên 0;1 và thỏa mãn
g x f ' x dx1, g ' x f x dx2
0
f x g x dx
A I 2 B I 1. C I 3 D I 1
Câu 42: Tính đạo hàm của hàm số y2017x?
x 2017
ln 2017
Câu 43: Cho ba số thực dương a, b, c khác 1 Đồ thị hàm số ylog x, ya log x, yb log xc
được cho trong hình vẽ dưới
Mệnh đề nào sau đây đúng?
A b c a B a c b C c a b D c b a
Trang 8Câu 44: Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng x 1 y 1 z
d :
Điểm nào trong các điểm dưới đây nằm trên đường thẳng (d)
A P 5; 2; 4 B Q 1;0;0 C M 3; 2; 2 D N 1; 1; 2
Câu 45: Tìm tập xác định D của hàm số 2
2
ylog x 1 ln x
A D1; B D 1;
C D ;1 1; D D0;
Câu 46: Cho (Cm) là đồ thị của hàm số 3
yx 3mx 1 với m ;0 là tham số thực Gọi d là đường thẳng đi qua hai điểm cực trị của (Cm) Tìm số các giá trị của m để đường thẳng d cắt đường tròn tâm I(-1;0), bán kính R = 3 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất
Câu 47: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x Trong y z 1 0 các đường thẳng sau, đường thẳng nào cắt mặt phẳng (P)?
A d : y1 x 1 t2 t , t
z 3
B d :1 x 1 y 1 z 2
x 1
d : y 2 t , t
z 3 t
D d :1 x 1 y 1 z 2
Câu 48: Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và đường thẳng
Gọi là đường thẳng đi qua điểm A, vuông góc với đường thẳng d và
cắt trục hoành Tìm một vecto chỉ phương u của đường thẳng
A u0; 2;1 B u1;0;1 C u1; 2; 0 D u2; 2;3
Câu 49: Trong không gian cho đường thẳng d Tìm tập hợp tất cả các điểm trong không gian
cách d một khoảng không đổi R
A Hình nón có trục là đường thẳng d và bán kính đáy R
B Mặt trụ có trục là đường thẳng d và bán kính đáy R
C Khối trụ có trục là đường thẳng d và bán kính đáy R
D Hình trụ có trục là đường thẳng d và bán kính đáy R
Trang 9Câu 50: Tìm hàm số F(x), biết F(x) là một nguyên hàm của hàm số f x x và F(1) = 1
2
2 x
Trang 10Đáp án
11-C 12-A 13-C 14-B 15-B 16-B 17-A 18-D 19-C 20-A 21-C 22-B 23-D 24-D 25-B 26-A 27-D 28-D 29-B 30-C 31-D 32-B 33-A 34-B 35-D 36-B 37-D 38-C 39-D 40-A 41-C 42-A 43-C 44-C 45-A 46-A 47-D 48-D 49-B 50-D
LỜI GIẢI CHI TIẾT Câu 1: Đáp án C
Ta có
1
Cách 2: Bấm log2 5233 22 2 23
30
Câu 2: Đáp án C
1 2
z 1 i
Câu 3: Đáp án B
Câu 4: Đáp án C
Câu 5: Đáp án C
3
3
x x 0;1;5;6
Câu 6: Đáp án B
Phương trình mặt phẳng (Q) có dạng x 2y 2z D 0 D 0
Khi đó (S) có tâm I 1; 2; 2 ; R tiếp xúc với (Q) nên 3 9 D
1 4 4
Trang 11
Câu 7: Đáp án C
Dựa vào đồ thị ta có: x 0 y 1 nên d = 1 suy ra yax3bx2cx 1
Do (C) qua điểm 1;0 và (1;2) nên a b c 1 0
Do đồ thị hàm số uốn tại điểm x 0 b 0 b 0
3a
b 0
a 1
c 0
Câu 8: Đáp án A
Từ giả thiết, ta có
2
2
2
x
4 1 2y 1 x 1 2y 1 x 1 2b 1 2a
T
1 2b 1 2a
2
f t
Khảo sát hàm số f(t) suy ra giá trị nhỏ nhất của f(t) là 8
5 Vậy
8 5 min
P e
Câu 9: Đáp án A
Dùng công thứ vay trả góp n
n
N.y y 1 a
với y 1 0, 5%, n là số tháng, N = 500 là số tiền vay ban đầu và a = 10 là số tiền mỗi tháng phải trả
n n
500 1 0,5% 0,5%
Câu 10: Đáp án A
Ta có
2
y '
Trang 12Hàm số nghịch biến trên khoảng y ' 0 2
Mặt khác
Câu 11: Đáp án C
sin d; P cos
suy ra d M; P IM.sin d; P 8
Câu 12: Đáp án A
2 6 6
1
a
23 3
S
8
Câu 13: Đáp án C
Gọi N(a;b;c) thì ON a2b2 c2
2 2 2
2 2 2 4a 8b 8c
min
Câu 14: Đáp án B
Dựng hình như hình vẽ với BM = AI = CK Đặt AB
= 1
Khi đó VABCD.A'B'C'D' theo GT suy ra 1
ADP.BCNM
1
V
3
Trang 13Dễ thấy AINK là hình bình hành có đường chéo cắt nhau tại trung điểm mỗi đường
Khi đó AICKKNVI.AMN VK.MPN
Suy ra VADP.BCNM VIPKM.ADCB1.CK
Cho VADP.BCNM 1 CK 1 CN 2
Câu 15: Đáp án B
Ta có Sxq rl r r2h2 15
Câu 16: Đáp án B
PT hoành độ giao điểm hai đồ thị là 2
x x Ta có 2 x 2 2
x 2; 2 x x 2 Suy ra diện tích cần tính bằng 0 2
20
3
Câu 17: Đáp án A
AB 0; 2;7
Câu 18: Đáp án D
Gọi độ dài một cạnh hình vuông và bán kính đường tròn lần lượ là a, R
1
2
l a 4 l R 2
Khi đó diện tích hình vuông và hình tròn lần lượt bằng
2 1
2 2 1
1 2
1 2 2
2 2
l S
16
16 4 l
S 4
2 2
min 0
1 2
2 0
2
Câu 19: Đáp án C
y' đổi dấu khi qua các điểm x = -2; x = 5 nên hàm số có 2 cực trị
Câu 20: Đáp án A
Trang 14Câu 21: Đáp án C
Mặt khác SA = SB = SC = a nên tâm đường tròn
hình chiếu vuông của đỉnh S xuống mặt đáy là
tâm đường tròn ngoại tiếp tam giác ABC và là
trung điểm của AC
Ta có:
ABC
S.ABC
2 2
V
3
Câu 22: Đáp án B
Phương trình đường tròn là 2 2
y30 25 x Khi đó V được giới hạn bởi hình phẳng
2 2
quay quanh trục Ox Ta có: 5 2 2 2
5
Câu 23: Đáp án D
2
x 1
x 1
S 3
x 3
Câu 24: Đáp án D
2
2 S
4
Câu 25: Đáp án B
Độ dài đường sinh của phễu là lN AM AK 3 3
2
Trang 15Bán kính đáy của phễu là r l 3
N
Câu 26: Đáp án A
Suy ra hàm số đồng biến trên các khoảng và ; 1 1;
Câu 27: Đáp án D
Câu 28: Đáp án D
Gọi H là trọng tâm tam giác ABC suy ra SHABC
Gọi M là trung điểm của BC ta có AM a 3
2
Khi đó AH 2AM 2 a 3 a 3
Lại có
2
3
2 S.ABC ABC
Áp dụng với
3 a
12
Câu 29: Đáp án B
Số phức liên hợp của z là -3 - 2i
Câu 30: Đáp án C
Câu 31: Đáp án D
2
A 1; 0
Suy ra ABACBC 3 ABC là tam giác đều, suy ra S 3 3
4
Trang 16Câu 32: Đáp án B
x 1 3
PT2 2 x 1 3 x 2 S 2
Câu 33: Đáp án A
Đặt z a bi z a bi z z 2a
Câu 34: Đáp án B
Hàm số có tập xác định
2
2 2
x 3
x 1
Suy ra
2;0 2;0
Câu 35: Đáp án D
y '' 12x 4
y ' 1 y ' 1 8 0
Hàm số đạt cực đại tại điểm x = 0, đạt
cực tiểu tại điểm x = - 1 và x = 1
Câu 36: Đáp án B
Câu 37: Đáp án D
z a bi; a, b
2
2
2a 3 b
2a 7
4
b
4
20a 4a 1 0
không có số
phức z thỏa mãn điều kiện đã cho
Câu 38: Đáp án C
Trang 17Ta có: S 2 S 2
h
2
Câu 39: Đáp án D
Câu 40: Đáp án A
Ta có: uOz 0; 0;1 khi đó nP OM; uOz2; 1;0 P : 2x y 0
Câu 41: Đáp án C
Ta có: 1 ' 1 1
f x g x dx f ' x g x dx f x g ' x dx 1 2 3
Câu 42: Đáp án A
Câu 43: Đáp án C
Dễ thấy a, b > 1; 0 < c < 1 (vì hàm số log x đồng biến khi m > 1 và nghịch biến khi m
0 ) m 1
Lại có cho x100log 100a log 100b a b
Câu 44: Đáp án C
Dễ thấy điểm M 3; 2; 2 d
Câu 45: Đáp án A
x 0
x 0
x 1
Câu 46: Đáp án A
y ' x 3mx 1 3x 3my ' 0 3x 3m0 Suy ra với m < 0 thì đồ thị hàm số có hai điểm cực trị Và đường thẳng đi qua hai điểm cực trị của đồ thị hàm số là
d : 2mx y 1 0
Đường thẳng d luôn đi qua điểm M(0;1) Ta có: IM 2 nên M nằm trong đường tròn R
IAB
1
2
f d d 9 d với d 0; 2 ta được Max f d0; 2 f 2
Trang 18Dấu bằng xảy ra 2 2
2
2m 1
2
Câu 47: Đáp án D
Dễ thấy các đường thẳng d1; d2; d3 đều song song với (P) hoặc nằm trên (P) do u ; u ; u đều 1 2 3 vuông góc với n P
Câu 48: Đáp án D
Giả sử cắt trục hoành tại B t;0;0 AB t 1; 2; 3
Cho AB.ud 0 2 t 1 2 6 0 t 1 AB 2; 2; 3 2; 2;3
Câu 49: Đáp án B
Câu 50: Đáp án D
3