1. Trang chủ
  2. » Khoa Học Tự Nhiên

đề thi quốc tế 2007

2 392 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề Thi Quốc Tế 2007
Trường học Art of Problem Solving
Thể loại Đề Thi
Năm xuất bản 2007
Thành phố Ha Noi
Định dạng
Số trang 2
Dung lượng 92,03 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Đề thi toán quốc tế lần thứ 48 được tổ chức tại Hà Nội - Việt Nam. Kỳ thi diễn ra từ 19 đến 31-7-2007..

Trang 1

IMO 2007

Ha Noi, Vietnam

Day 1 - 25 July 2007

1 Real numbers a1, a2, : : :, an are given For each i, (1  i  n), de ne

di = maxfaj j 1  j  ig minfaj j i  j  ng and let d = maxfdij 1  i  ng

(a) Prove that, for any real numbers x1 x2      xn,

maxfjxi aij j 1  i  ng  d2: () (b) Show that there are real numbers x1  x2      xn such that the equality holds in (*)

2 Consider ve points A, B, C, D and E such that ABCD is a parallelogram and BCED is a cyclic quadrilateral Let ` be a line passing through A Suppose that ` intersects the interior

of the segment DC at F and intersects line BC at G Suppose also that EF = EG = EC Prove that ` is the bisector of angle DAB

3 In a mathematical competition some competitors are friends Friendship is always mutual Call a group of competitors a clique if each two of them are friends (In particular, any group

of fewer than two competitiors is a clique.) The number of members of a clique is called its size

Given that, in this competition, the largest size of a clique is even, prove that the competitors can be arranged into two rooms such that the largest size of a clique contained in one room

is the same as the largest size of a clique contained in the other room

http://www.artofproblemsolving.com/

This le was downloaded from the AoPS MathLinks Math Olympiad Resources Page

Trang 2

IMO 2007

Ha Noi, Vietnam

Day 2 - 26 July 2007

4 In triangle ABC the bisector of angle BCA intersects the circumcircle again at R, the per-pendicular bisector of BC at P , and the perper-pendicular bisector of AC at Q The midpoint

of BC is K and the midpoint of AC is L Prove that the triangles RP K and RQL have the same area

5 Let a and b be positive integers Show that if 4ab 1 divides (4a2 1)2, then a = b

6 Let n be a positive integer Consider

S = f(x; y; z) j x; y; z 2 f0; 1; : : : ; ng; x + y + z > 0g

as a set of (n + 1)3 1 points in the three-dimensional space Determine the smallest possible number of planes, the union of which contains S but does not include (0; 0; 0)

http://www.artofproblemsolving.com/

This le was downloaded from the AoPS MathLinks Math Olympiad Resources Page

...

This le was downloaded from the AoPS MathLinks Math Olympiad Resources Page

Trang 2

IMO 2007< /h2>

Ha... competitiors is a clique.) The number of members of a clique is called its size

Given that, in this competition, the largest size of a clique is even, prove that the competitors can be arranged... class="page_container" data-page="2">

IMO 2007< /h2>

Ha Noi, Vietnam

Day - 26 July 2007

4 In triangle ABC the bisector of angle BCA intersects the circumcircle again at R,

Ngày đăng: 24/08/2013, 07:46

TỪ KHÓA LIÊN QUAN

w