1. Trang chủ
  2. » Thể loại khác

Trắc nghiệm oxyz 2018

14 824 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 670,2 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Nhị thức, tam thức (vừa cập nhật)Nhị thức, tam thức (vừa cập nhật)Nhị thức, tam thức (vừa cập nhật)Nhị thức, tam thức (vừa cập nhật)Nhị thức, tam thức (vừa cập nhật)Nhị thức, tam thức (vừa cập nhật)Nhị thức, tam thức (vừa cập nhật)Nhị thức, tam thức (vừa cập nhật)Nhị thức, tam thức (vừa cập nhật)Nhị thức, tam thức (vừa cập nhật)Nhị thức, tam thức (vừa cập nhật)Nhị thức, tam thức (vừa cập nhật)Nhị thức, tam thức (vừa cập nhật)Nhị thức, tam thức (vừa cập nhật)

Trang 1

TRẮC NGHIỆM OXYZ 2018 – Phần 2

Câu 1: Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng (d) có phương trình

Điểm nào sau đây không thuộc đường thẳng (d)?

Câu 2: Trong không gian với hệ tọa độ

Oxyz

, tìm trên trục tung tất cả các điểm cách đều hai điểm (1; 3;7)

A

B(5;7; 5 − )

A B N(0; 2;0 − )

C , D.M(0;2;0 ,) (P 0;1;0)

Câu 3: Trong không gian với hệ trục tọa độ , cho hai đường thẳng và

2

:

x y z

d = − = −

Khẳng định nào sau đây là đúng?

A cắt nhau B trùng nhau C song song D chéo nhau

Câu 4: Trong không gian với hệ trục tọa độ , cho mặt phẳng và mặt cầu

Mặt phẳng cắt mặt cầu theo giao tuyến là đường tròn (C), tính

bán kính của đường tròn (C)

Câu 5: Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình tổng quát của

x 1 y 2 z 3

− = + = −

M 1; 2;3 − N 4;0; 1( − ) P 8;1;2( ) Q 2; 4;7(− − )

(0;2;0)

Oxyz

1

:

d − = = −

1, 2

Oxyz ( )P x y: − +4z− =4 0

( )S x: 2+y2+ −z2 4x−10z+ =4 0 ( )P ( )S

(3;0; 1)

Mx+ 2y z− + = 1 0 2x − + − =y z 2 0

Trang 2

A B C D

Câu 6: Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;4;2) và đường thẳng d:

Viết phương trình mặt phẳng (P) chứa d sao cho khoảng cách từ A đến (P) là lớn nhất

Câu 7: Trong không gian với hệ trục , viết phương trình mặt phẳng đi qua điểm và

Câu 8: Trong không gian với hệ trục tọa độ , cho bốn điểm

Viết phương trình mặt cầu đi qua bốn điểm

xy− − = x− 3y+ − = 5z 8 0 x+ 3y− + = 5z 8 0 x+ 3y+ 5z+ = 8 0

x− = y+ = z

4

5

x+ yz+ = 5x+13y z− + =21 0 5x+13y− + =4z 21 0 5x+13y− + =5z 21 0

( )P x: −2y z− + =1 0

2x y z+ − − =1 0 − +x 2y z+ + =1 0

(3;3;3 )

x +y + − −z x yz= x2+y2+ − +z2 3x 3y−3z=0

x +y + +z xy+ z= x2+y2+ +z2 3x−3y−3z=0

Trang 3

Câu 9: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng cắt mặt cầu

theo giao tuyến là một đường tròn có bán kính Biết tâm của là , tính bán kính mặt

cầu

Câu 10: Trong không gian với hệ tọa độ Oxyz, viết phương trình đường thẳng d đi qua A(1;1;1) và

vuông góc với đường thẳng d’: cách B(3;1;3) một khoảng nhỏ nhất

Câu 11: Trong không gian với hệ tọa độ Oxyz, cho ba điểm và Tìm tọa

độ trọng tâm G của tam giác ABC

Câu 12: Trong không gian với hệ tọa độ Oxyz, tìm toạ độ tâm I và bán kính R của mặt cầu (S):

A I(-1;2;0) và R = 1 B I(1;0;2) và R = 2 C I(1;-2;0) và R = 1 D I(3;2;1) và R = 2.

( )P x: +2y+2z− =1 0 ( )S

1 3

( )S

3

3

x=y- =z

1 ' (t' )

1

z

¡

ì = +

ïï

íï

ï =

ïïî

1 '

1 ' (t' ) 1

z

¡

ì = -ïï

íï

ï = ïïî

1 2 '

1 '

y

¡

ì = +

ïï

íï

ï =

-ïïî

x- =y- =z

( ) (2 )2 2

x+ + −y +z =

Trang 4

Câu 13: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x - y +5 z + 5 = 0 Vectơ nào trong

các vectơ sau là một vectơ pháp tuyến của mặt phẳng (P)?

Câu 14: Trong không gian với hệ tọa độ Oxyz, cho điểm A(3;0; 1 − ) và B(1;3; 2 − ) Gọi M là điểm nằm

trên trục hoành và cách đều 2 điểm ,A B Tìm tọa độ điểm M

A. M (− 1;0;0). B M (1;0;0) C M (2;0;0) D M (− 2;0;0) .

Câu 15: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu tâm và đi qua

Câu 16: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng và mặt phẳng

M là điểm có hoành độ âm thuộc d sao cho khoảng cách từ M đến (P) bằng 2 Tìm

toạ độ điểm M

Câu 17: Trong không gian với hệ tọa độ Oxyz, cho 3 điểm , , Gọi H a b c( ; ; )

trực tâm của tam giác ABC Tính giá trị của a b c+ + .

Câu 18: Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A(1;1;1), B(2;1;0), C(2;0;2) Viết phương trình mặt phẳng đi qua hai điểm B, C và cách A một khoảng lớn nhất

(2;1;5)

n=

r

(2; 1;5)

(2;4; 1)

(5; 2;3)

A

x +y + −z x+ yz− = x2+y2+ −z2 4x−8y+2z− =8 0

x +y + +z x+ y+ z− = x2+y2+ −z2 4x−8y+2z− =12 0

x y 1 z 2

d :

( )P : x 2y 2z 3 0 + − + =

( )

M 2;3;1 − M 1;5; 7(− − ) M 2; 5; 8(− − − ) M 1; 3; 5(− − − )

A( ; ; ) 1 0 0 B( ; ; ) 0 1 0 C( ; ; ) 0 0 1

Trang 5

A -5x+2y+z+8=0 B -3x+2y+z+4=0 C 7x+2y+z-16=0 D -x+2y+z=0

Câu 19: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình

Tìm tọa độ tâm I và bán kính R của mặt cầu (S)

Câu 20: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình .

Điểm nào dưới đây thuộc mặt phẳng (P)?

A M(2;-1;-3) B N(2;-1;-2) C P(2;-1;-1) D Q(3;-1;2).

Câu 21: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình

Véc tơ nào dưới đây là một véctơ chỉ phương của đường thẳng d?

Câu 22: Trong không gian với hệ tọa độ Oxyz, cho 3 điểm , , Tìm tất

cả các giá trị thực của m để tam giác vuông tại ?

Câu 23: Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm và đi

qua gốc

2x y− − 2z− = 3 0

x+ = y− = z+

( 1;1; 2)

ar= − − ar = − (1; 1;2) ar= (2; 1;1) − ar= (2;1; 2) −

(2;3; 1)

3

(1; 2;3)

I

O

( ) (2 ) (2 )2

x+ + y− + −z =

x +y + −z xyz= x2+y2+ − −z2 x 2y−3z=0

Trang 6

Câu 24: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng và mặt cầu

Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có bán kính là :

Câu 25: Trong không gian với hệ tọa độ Oxyz, cho hình bình hành với A(1;0;1), B(2;1; 2) và giao

điểm của hai đường chéo là

3 3

;0;

2 2

I 

  Tính diện tích của hình bình hành ABCD

Câu 26: Trong không gian với hệ tọa độ Oxyz, cho A(1;4;2) và d: Viết phương trình

mặt phẳng (P) chứa d sao cho khoảng cách từ A đến (P) là lớn nhất

( )P : 2x−2y z− − =4 0

( )S x: 2+y2+ −z2 2x−4y− − =6z 11 0

ABCD

x− = y+ = z

4

5

x+ yz+ = 5x+13y z− +21 0= 5x+13y−4z+21 0= 5x+13y− +5z 21 0=

Trang 7

TRẮC NGHIỆM OXYZ 2018 – Phần 1 Câu 1: Trong không gian với hệ tọa độ

Oxyz

, cho

(2;1; 1) −

A

,

(3;0;1)

B

(2; 1;3) −

C

, điểm D thuộc

Oy

và thể tích của tứ diện ABCD bằng 5 Tìm tọa độ của đỉnh D?

A (0; 7;0 − )

B (0;8;0 )

C

(0; 7;0) (0;8;0)

D.

(0; 8;0) (0;7;0)

Câu 2: Trong không gian với hệ tọa độ

Oxyz

cho

(1;3;5), ( 5; 3; 1)

A B − − −

Phương trình mặt cầu đường

kính AB là

A

x +y + +z xz− =

B

x +y + +z xz− =

C

x +y + −z x+ z− =

D

x +y + +z xz− =

Câu 3: Trong không gian với hệ tọa độ Oxyz, cho( )P x: +2y+2z− =1 0

và ( )Q x: +2y+2z+ =5 0

, khoảng cách giữa mặt phẳng (P) và (Q) là

Câu 4: Trong không gian với hệ tọa độ

Oxyz

cho

(1; 2;3), ( 4; 4;6).

Tọa độ trọng tâm G của tam giác OAB là

A

;3;

G− 

B G( 3;6;9)−

C. G( 1; 2;3)−

D G(1; 2; 3)− −

Câu 5: Trong hệ tọa độ Oxyz Cho đường thẳng

:

− = − = +

d

và mặt phẳng

( ) :P x z− − = 4 0

Hình chiếu vuông góc của d trên (P) có phương trình là:

A.

3

1

1

= +

 = +

 = − +

x t

y t

B.

3 1 1

= +

 =

 = − −

x t y

C.

3 3 1 1

= +

 = +

 = − −

y t

D.

3

1 2 1

= −

 = +

 = − +

x t

y t

Trang 8

Câu 6 Trong không gian với hệ tọa độ

,

Oxyz

cho đường thẳng

:

x= y = z

và điểm M(2; 1;3− )

Gọi M' là điểm đối xứng vớiM qua

,

tính OM'.

D OA'= 53.

Câu 7 Trong không gian

,

Oxyz

cho điểm A a( ;0;0 , ) (B 0; ;0 , b ) (C 0;0; ,c)

trong đó a>0

, b>0

, c>0

1 2 3

7.

+ + =

a b c

Biết mặt phẳng (ABC)

tiếp xúc với mặt cầu

( ) ( ) (2 ) (2 )2 72

7

Thể tích của khối tứ diện OABC

A.

2

.

9

B

1 6

C

3 8

D

5 6

Câu 8: Trong không gian với hệ tọa độ

Oxyz

cho

(1;0;1), (0;1; 2).

ur vr −

Tích vô hướng của u

r

v

r là

A u vr r. =0

B u vr r. =2

C u vr r. = −2

D

(0;0; 2)

u vr r= −

Câu 9: Trong không gian với hệ tọa độ

Oxyz

cho mặt cầu

( ) : (S x−2) +y + +(z 1) =9

Tọa độ tâm I của mặt cầu (S) là

A.

(2;0; 1)

B

( 2;0;1)

I

C

(2; 1)

I

D

(2; 1;3)

I

Câu 10: Trong không gian với hệ tọa độ

Oxyz

cho điểm

(2;3;5)

A

, mặt phẳng

( ) :P z− = 5 0

và mặt cầu

( ) : (S x−3) + −(y 4) + −(z 8) =25

Tìm phương trình tham số của đường thẳng ∆

đi qua A

, nằm trong

(P) và cắt (S) theo dây cung ngắn nhất

A

2

3

5

x t

y t

z

= −

 = +

 =

B

2 3 5

x t

y t z

= +

 = +

 =

C

2

3 2 5

x t

z

= −

 = +

 =

D

2 2 3 5

y t z

= +

 = +

 =

Câu 11: Đâu là phương trình tham số của đường thẳng

x− = y+ = z

A

1 2

1 3

2

y t

z t

= − +

 = +

 = −

B

1 2

1 3 2

z t

= − −

 = − −

 =

C

1 2

1 3 2

x t

z t

= +

 = − +

 = −

D

1 2

1 3 2

z t

= − +

 = − +

 =

Trang 9

Câu 12: Cho đường thẳng d:

1 1 9

z

= +

 = +

 =

và mặt phẳng (P): x+2y−2z+ =3 0

Tìm phương trình đường thẳng d’ là hình chiếu vuông góc của đường thẳng d lên mặt phẳng (P)

A

3 2

1

1 2

= − −

 = +

 = +

B.

3 2 1

1 2

= − +

 = +

 = +

C.

3 2 1

1 2

= +

 = +

 = −

D.

3 2 1

1 2

= −

 = +

 = −

Câu 13: Trong không gian với hệ trục tọa độ

Oxyz

, cho các điểm A(1; 1;1 ,− ) (B 0;1; 2− )

, và điểm M

thay đổi trên mặt phẳng tọa độ

Oxy

Tìm giá trị lớn nhất của

MA MB

A

14

B

12

C

2 2

D

6

Câu 14: Phương trình mặt phẳng chứa

1

:

và 2

:

-là:

A

3x+2y- 5=0

B

6x+9y z+ + =8 0

C

8x 19y z 1 0

D

6x+9y z+ + =8 0

Câu 15: Trong không gian với hệ tọa độ

,

Oxyz

cho điểm A(1; 2;1 , − ) (B 0;2; 1 , − ) (C 2; 3;1 − )

Điểm M thỏa mãn

T =MAMB +MC

nhỏ nhất Tính giá trị của

2 2 2 3 2

P x= + y + z

A P=101.

B. P=134.

C P=114.

D P=162.

Câu 16: Trong không gian với hệ toạ độ Oxyz, cho đường thẳng

x 1 y z 1 :

và hai điểm

A(1;2; 1),B(3; 1; 5)− −

Viết phương trình đường thẳng d đi qua điểm A và cắt đường thẳng ∆ sao cho khoảng cách từ B đến đường thẳng d là lớn nhất Phương trình của d là:

A

:

d − = − = +

B

:

d − = − = +

C

:

d − = − = +

D

:

d − = − = +

Trang 10

Câu 17:Trong không gian Oxyz, mặt phẳng

( )α

đi qua điểm M(1; -2; 2) và song song với mặt phẳng ( )β

: x – 2y + z + 3 = 0 có phương trình là:

Câu 18:Trong không gian Oxyz cho mặt cầu

4

S x +y + − + − + =z x y z

Tọa độ tâm I

và bán kính R

của mặt cầu

( )S

là:

A

I −  R=

B

I− −  R=

C

I −  R=

D

I− −  R=

Câu 19: Trong không gian Oxyz và điểm

(1; 2;3)

I

Phương trình mặt cầu tâm I tiếp xúc với mặt phẳng (Oyz)

A

(x−1) + −(y 2) + −(z 3) =2

B

(x−1) + −(y 2) + −(z 3) =1

C

(x−1) + −(y 2) + −(z 3) =3

D

(x+1) + +(y 2) + +(z 3) =1

Câu 20: Tìm tất cả các giá trị thực của a để khoảng cách từ điểm

M(1; 4;a) −

đến mặt phẳng (P) : x+ 2y+ 2z− = 5 0

bằng 8?

a 18

= −

 =

D

a 18

= −

 =

Câu 21: Trong hệ trục tọa độ Oxy, cho mặt phẳng (P): 2x+2y+z+5=0 cắt mặt cầu (S):

theo giao tuyến là một đường tròn (C) Tìm diện tích đường tròn (C)?

A 64 π

B 16 π

C 8 π

D 20 π

Câu 22:Trong hệ trục tọa độ Oxyz, xác định điểm A’ đối xứng với điểm A(1; 2; -3) qua mặt phẳng (P):

x – 2y + z = 0 ?

A A’(3; -2; -1) B A’(2;-1;2) C A’(2; 0; -2) D A’(1; -1; 3)

Câu 23: Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;3), mặt cầu (S) có phương trình

( ) (2 ) (2 )2

x+ + +y + −z =

và đường thẳng

:

d − = − = −

Viết phường trình đường thẳng ∆

đi qua M cắt mặt cầu (S) tại A, cắt đường thẳng d tại B sao cho MB=2MA

, Biết điểm B có hoành độ

nhỏ hơn 2

A

1

3 2

x

=

∆  = −

 = −

B

1

3 2

x t

z t

= +

∆  = −

 = −

C

3 2

x t

z t

=

∆  = −

 = −

D

1

3 2

x

y t

=

∆  = −

 = −

Trang 11

Câu 24: Trong không gian với hệ tọa độ Oxyz , cho đường thẳng

:

x yz+

và mặt phẳng

( )P :11x my nz+ + − 16 0 =

Biết ∆ ⊂( )P

, khi đó m,n có giá trị bằng bao nhiêu?

A

m= n= −

B

m= − n=

C.

10;n 4

m= =

D

Câu 25: Trong không gian với hệ tọa độ Oxyz , cho vecto ar= −(1; 2;4)

br=(x y z0; ;0 0)

cùng phương

với vectơ a

r

Biết vectơ b

r tạo với tia Oy một góc nhọn và

21

br =

Khi đó tổng 0 0 0

x + +y z

bằng bao nhiêu

A 0 0 0

3

x + + =y z

3

x + + = −y z

6

x + + =y z

6

x + + = −y z

Câu 26: Trong không gian với hệ trục

Oxyz

, mặt phẳng ( )Q

đi qua ba điểm không thẳng hàng (2; 2;0)

M

, N(2;0;3)

, P(0;3;3)

có phương trình:

A.

9x+ 6y+ 4z− 30 0 =

B

9x− 6y+ 4z− = 6 0

C

9x 6y 4z 30 0

− − − − =

D

9x 6y 4z 6 0

− + − − =

Câu 27: Trong không gian với hệ trục

Oxyz

, cho mặt phẳng ( )P : 2x y− − + =2z 6 0

Khẳng định nào sau đây sai?

A Điểm M(1; 3; 2)

thuộc mặt phẳng ( )P

B Một vectơ pháp tuyến của mặt phẳng

( )P

(2; 1; 2)

nr= − −

C Mặt phẳng ( )P

cắt trục hoành tại điểm

( 3;0;0)

H

D Khoảng cách từ gốc tọa độ O đến mặt phẳng ( )P

bằng 2

Câu 28: Trong không gian với hệ tọa độ

Oxyz

, cho mặt cầu ( )S x: 2+y2+ −z2 4x+2y+6z− =2 0

Mặt

cầu ( )S

có tâm I và bán kính R là:

Trang 12

A I(−2;1;3 ,) R=2 3

C I(2; 1; 3 ,− − ) R=4

Câu 29: Trong không gian với hệ tọa độ Oxyz, đường thẳng d đi qua hai điểm M(2; 3; 4)

, N(3; 2; 5)

có phương trình chính tắc là

A.

x− = y− = z

.B

x− = y− = z

.C

x− = y− = z

.D

x− = y− = z

Câu 30: Trong không gian với hệ tọa độ

Oxyz

, tọa độ giao điểm của mặt phẳng ( )P : 2x y z+ − − =2 0

và đường thẳng

:

x+ yz

M a b c( ; ; )

Tổng a b c+ +

bằng

A −2

Câu 31: Cho mặt cầu (S):

2+ 2+ −2 2 +4 − =9 0

x y z x y

Mặt phẳng (P) tiếp xúc với mặt cầu (S) tại điểm

(0; 5; 2− )

M

có phương trình là :

A

− − =

x y

B

− +y z+ =

+ − + =

x y z

D.

+ − + =

x y z

Câu 32: Trong không gian với hệ tọa độ

Oxyz

, cho mặt phẳng ( )Q : 2x+2y z− − =4 0

Gọi M , N , P

lần lượt là giao điểm của mặt phẳng ( )Q

với ba trục tọa độ Ox,

Oy

, Oz Đường cao MH của tam giác

MNP

có một véctơ chỉ phương là

A ur= −( 3;4; 2− )

B ur=(2; 4;2− )

D ur= − −( 5; 4;2)

Câu 33 Trong không gian với hệ tọa độ

Oxyz

, cho mặt cầu

( )S

có phương trình

Tính tọa độ tâm I và bán kính R của

( )S

A. Tâm

( 1;2; 3)

I -

-và bán kính R =4 B Tâm

(1; 2;3)

I

-và bán kính R =4

Trang 13

C Tâm

( 1;2;3)

I

-và bán kính R =4 D Tâm

(1; 2;3)

I

-và bán kính R =16

Câu 34 Trong không gian với hệ tọa độ

Oxyz

, mặt cầu

( )S

có tâm

(2;1; 1)

-, tiếp xúc với mặt phẳng tọa

độ

(Oyz)

Phương trình của mặt cầu

( )S

là:

A

( ) 2 ( ) 2 ( ) 2

B

( ) 2 ( ) 2 ( ) 2

C.

( ) 2 ( ) 2 ( ) 2

D

( ) 2 ( ) 2 ( ) 2

Câu 35 Trong không gian với hệ tọa độ

,

Oxyz

cho mặt phẳng

( )Q : 2x y- + - 5z 15 0 =

và điểm

(1;2; 3 - )

E

Mặt phẳng

( )P

qua E và song song với

( )Q

có phương trình là:

A

( )P :x+ 2y- 3z+ 15 0 =

B

( )P :x+ 2y- 3z- 15 0 =

C

( )P : 2x y- + 5z+ 15 0 =

D

( )P : 2x y- + 5z- 15 0 =

Câu 36 Trong không gian với hệ tọa độ

,

Oxyz

cho hai điểm

(4;1; 2 - )

A

(5;9;3)

B

Phương trình mặt phẳng trung trực của đoạn AB là:

A

B

+ 8 - 5 - 41 0 =

C

- 8 - 5 - 35 0 =

D.

+ 8 + 5 - 47 0 =

Câu 37 Trong không gian với hệ tọa độ

,

Oxyz

cho hai điểm

(2;0; 1 - )

P

,

(1; 1;3 - )

Q

và mặt phẳng ( )P : 3x+ 2y z- + = 5 0

Gọi

( )a

là mặt phẳng đi qua

,

P Q

và vuông góc với

( )P

, phương trình của mặt phẳng

( )a

là:

A

( )a -: 7x+ 11y z+ - 3 0 =

B

( )a :7x- 11y z+ - = 1 0

C.

( )a -: 7x+ 11y z+ + 15 0 =

D

( )a :7x- 11y z- + = 1 0

Câu 38 Trong không gian với hệ tọa độ

,

Oxyz

cho mặt phẳng

( )P :3x y+ - 3z+ = 6 0

và mặt cầu

Trang 14

( ) (S : x- 4 ) + (y+ 5 ) + + (z 2 ) = 25

Mặt phẳng

( )P

cắt mặt cầu

( )S

theo giao tuyến là một đường tròn Đường tròn giao tuyến này có bán kính r bằng:

Câu 39 Trong không gian với hệ tọa độ

Oxyz

, cho đường thẳng

1 :

và mặt phẳng ( )a :x- 2y- 2z+ = 5 0

Tìm điểm A trên d sao cho khoảng cách từ A đến

( )a

bằng 3

A

(0;0; 1)

-B

( 2;1; 2)

A -

-C.

(2; 1;0)

A

-D

(4; 2;1)

A

-Câu 40 Trong không gian với hệ trục tọa độ Oxyz cho hai đường thẳng 1

:

− − và

2

:

d − = − =

− Vị trí tương đối giữa d1 và d2là:

Ngày đăng: 27/01/2018, 19:53

TỪ KHÓA LIÊN QUAN

w