1. Trang chủ
  2. » Giáo án - Bài giảng

Bài tập thể tích Khối tròn xoay

5 2,7K 26
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài tập thể tích khối tròn xoay
Tác giả Phạm Văn Sơn
Trường học Trường Đại Học
Chuyên ngành Toán học
Thể loại Bài tập
Định dạng
Số trang 5
Dung lượng 144 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

c Tính diện tích xung quanh của lăng trụ.. Bài 7 Tính thể tích của khối tứ diện đều cạnh a.. Tính thể tích biết diện tích xung quanh bằng tổng diện tích hai đáy.. a Tính diện tích xung

Trang 1

Bài tập Hình 12 Giáo viên: Phạm văn Sơn

Bài tập khối đa diện và khối tròn xoay.

Bài 1 Hãy chia một khối hộp thành năm khối tứ diện.

Bài 2 Chia một khối tứ diện thành bốn

khối tứ diện bằng hai mặt phẳng

Bài 3 Cho ba đờng thẳng song song không đồng phẳng

a, b, c Trên a, b, c lần lợt lấy các đoạn thẳng AA', BB',

CC' thoả mãn: AA' < BB' < CC" Hãy chia hình đa diện

ABCA'B'C' thành một hình chóp và một hình lăng trụ

Bài 4 Nếu 3 kích thớc của khối hộp chữ

nhật tăng lên k lần thì thể tích của nó tăng lên ?

Bài 5 Hình lăng trụ đứng ABC.A'B'C' có đáy ABC là  vuông

tại A, AC = b, C = 600 Đờng chéo BC tạo với (ACC'A') góc 300

a) Tính AC'

b) Tính Vlăng trụ

Bài 6 Cho lăng trụ ABC.A'B'C' có ABC đều cạnh a và A'

cách đều A, B, C Cạnh bên AA' tạo với mặt phẳng đáy góc 600

a) Tính thể tích lăng trụ

b) Chứng minh: BCC'B' là hình chữ nhật

c) Tính diện tích xung quanh của lăng trụ

Bài 7 Tính thể tích của khối tứ diện đều cạnh a.

Bài 8 Cho hình chóp tứ giác đều S.ABCD.

a) Biết AB = a và góc giữa mặt bên và mặt đáy bằng  Tính thể tích

b) Trung đoạn bằng d và góc giữa cạnh

Bài 9 Cho hình chóp tam giác đều S.ABC.

a) Biết AB = a, SA = l Tính thể tích

C'

C

B'

B A'

A

A

A'

B

B'

C

C'

Trang 2

Bài tập Hình 12 Giáo viên: Phạm văn Sơn

b) Biết SA = l, góc giữa mặt bên và đáy bằng  Tính thể tích

Bài 10 Cho hình chóp cụt  đều có cạnh đáy lớn 2a, đáy nhỏ a, góc của đờng cao với mặt bên bằng 300 Tính:

a) Diện tích toàn phần

b) Thể tích

Bài 11 Cho khối chóp cụt tứ giác đều có các cạnh đáy là a và b (a > b) Tính thể tích biết diện tích xung

quanh bằng tổng diện tích hai đáy

Bài 12 Hình trụ có bán kính đáy R, thiết diện qua trục là hình vuông.

a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ

b) Tính thể tích của khối trụ

c) Tính V1 (thể tích khối lăng trụ tứ giác đều nội tiếp trong khối trụ)

Bài 13 Hình trụ có bán kính đáy R, đờng cao R 3, A và B  đờng tròn đáy sao cho góc giữa AB và  bằng 300 với  là trục của hình trụ

a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ

b) Tính thể tích của khối trụ

c) Tính khoảng cách d (AB, )

Bài 14 Thiết diện qua trục của một hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.

a) Tính diện tích xung quanh và diện tích toàn phần của hình nón

b) Tính thể tích của khối nón

c) Thiết diện qua đỉnh và tạo với đáy góc 600 Tính diện tích thiết diện này

Bài 15 Hình nón cụt có chiều cao 2a và hai bán kính đáy lần lợt là a và 4a.

a) Tính độ dài đờng sinh l

b) Tính diện tích xung quanh và diện tích toàn phần của hình trụ

c) Tính thể tích của khối nón cụt

Bài 16 Cho lăng trụ đứng ABCD.A'B'C'D' có ABCD là hình thoi cạnh a, A = 600, OO' = 2a

a) Tính diện tích các mặt chéo

b) Tính diện tích toàn phần

c) Gọi S là trung điểm OO' Tính diện tích xung

quanh S1 của hình chóp S.ABCD

d) Tính khoảng cách d (O, (SAB))

Bài 16 Cho hình lập phơng ABCD.A'B'C'D' cạnh a Gọi K, L lần lợt là trung điểm B'C' và C'D'.

a) Xác định thiết diện của hình lập phơng với mặt phẳng (AKL)

b) Gọi K', L' lần lợt là hình chiếu của K, L trên mặt phẳng (ABCD) Tính diện tích ngũ giác AMKLN

O'

O

D'

D

C'

C B'

B

A'

A

S

K

M D'

D

C'

C

B'

B A'

A

L

N K

Trang 3

Bài tập Hình 12 Giáo viên: Phạm văn Sơn

Tính thể tích hình lập phơng có một mặt nằm trên đáy của hình

chóp và 4 đỉnh nằm trên 4 cạnh bên của hình chóp

Bài 18 Cho hình chóp tam giác S.ABC Lấy A'  SA, B'  SB, C'  SC Chứng minh rằng:

' ' '

.

' ' '

S A B C

S ABC

VSA SB SC

Bài 19 Cho tứ diện ABCD, gọi d là khoảng cách giữa hai đờng thẳng AB và CD,  là góc giữa hai đờng

.sin 6

ABCD

Bài 20 Cho khối chóp S.ABCD có đáy là hình bình hành

Gọi M là trung điểm SC Một mặt phẳng () đi qua AM và

song song với BD chia khối chóp thành hai phần

Tính tỉ số thể tích của hai phần đó

Bài 21: Cho 2 hình chữ nhật ABCD và ABEF không

cùng nằm trong một mặt phẳng và thỏa mãn: AB = a,

AD = AF = a 2,AC  BF Gọi HK là đờng vuông góc

chung của AC và BF (H  AC, K  BF)

a) Gọi I = DF   với   AC, () // BF Tính tỉ số DI

DF.

b) Tính độ dài đoạn HK

c) Tính diện tích toàn phần của tứ diện ABKH

Bài 22: Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a,

AD = 2a, AA' =a 2, M  đoạn AD, K là trung điểm B'M

a) Đặt AM = x (0  x < 2a) Tính V A KID' với I là tâm hình

hộp Tìm x để thể tích đó đạt giá trị lớn nhất

b) Khi M là trung điểm AD

* Thiết diện của hình hộp cắt bởi (B'CK) là hình gì?

Tính diện tích thiết diện đó theo a

* Chứng minh rằng đoạn thẳng B'M tiếp xúc

mặt cầu đờng kính AA'

Bài 23: Cho tứ diện OABC có OA, OB, OC đôi một vuông góc và OA = OB = OC = a Gọi K, M, N lần l

-ợt là trung điểm AB, BC, CA Gọi E là điểm đối xứng với O qua K, I = CE (OMN)

a) Chứng minh: CE  (OMN)

b) Tính diện tích của tứ giác OMIN theo a

H

F

E

D A

J I

E'

K

M

D'

D

C'

C

B'

B A'

A

I

Trang 4

Bài tập Hình 12 Giáo viên: Phạm văn Sơn

Bài 24: Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB = 2a, BC = a, các cạnh bên bằng nhau và

bằng a 2

a) Tính thể tích hình chóp S.ABCD

b) Gọi M, N, E, F lần lợt là trung điểm các cạnh AB, CD, SC, SD CMR: SN  (MEF)

Gọi K là điểm trên cạnh AD sao cho

3

a

AK  Tính khoảng cách giữa 2 đoạn thẳng MN và SK.

Bài 25: Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = 2a, AA' = a.

a) Tính khoảng cách giữa 2 đoạn thẳng AD' và B'C

b) Gọi M là điểm  AD sao cho AM 3

MD  Tính khoảng cách từ M tới (AB'C).

c) Tính thể tích tứ diện AB'D'C

Bài 26: Cho hình chóp đều S.ABC có các cạnh đáy đều bằng a, đờng cao SH = h.

a) Xác định thiết diện tạo bởi hình chóp với (P) qua BC và vuông góc với SA

a  thì (P) chia thể tích hình chóp theo tỷ số nào?

Bài 27: Trong (P) cho nửa đờng tròn (C) đờng kính AC, B là điểm  (C) Trên nửa đờng thẳng ax  (P)

lấy điểm S sao cho AS = AC Gọi H, K lần lợt là các chân đờng vuông góc hạ từ A xuống SB, SC

a) Chứng minh rằng: SBC, AHK vuông

b) Tính HK theo AC và BC

c) Xác định B trên (C) sao cho S SABS CAB đạt giá trị lớn nhất

Bài 28: Cho ABC đều cạnh a Trên đờng thẳng d vuông góc với (ABC) tại A lấy điểm M Gọi H là trực

tâm của ABC, K là trực tâm của BCM

a) CMR: MC  (BHK), HK  (BMC)

b) Khi M thay đổi trên d, tìm giá trị lớn nhất của thể tích hình chóp K.ABC

Bài 29: Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a, mặt bên tạo với đáy góc

600 Mặt phẳng (P) AB cắt SC, SD tại M, N Biết góc giữa (P) và (ABC) bằng 300

a) Tứ giác ABMN là hình gì? Tính S ABMN

b) Tính VS ABMN. theo a

Bài 30: Cho hình chóp đều S.ABCD có đáy là hình vuông cạnh 2a, cạnh bên SA = a 5 (P) đi qua AB và

 (SCD) (P) lần lợt cắt SC, SD tại C', D'

a) Tính S ABC D' '

b) Tính VABCDC D' '

Bài 31: Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a Góc phẳng nhị diện tạo bởi mặt

bên và đáy là  (450 <  < 900)

a) Tính S tp và V của S.ABCD

b) Gọi M là trung điểm BC, MK  (SAD) Mặt phẳng (BCK) cắt hình chóp theo thiết diện là hình gì? Tính diện tích thiết diện theo a và 

Trang 5

Bài tập Hình 12 Giáo viên: Phạm văn Sơn

Bài 32: Cho hình lập phơng ABCD.A'B'C'D' cạnh a Trên AB lấy điểm M, trên CC' lấy điểm N, trên D'A'

lấy điểm P sao cho AM = CN = D'P = x (0  x  a)

a) CMR: MNP đều Tính S MNP Tìm x để S MNPđạt giá trị nhỏ nhất

b) Khi x =

2

a

, hãy tính V B MNP' và bán kính mặt cầu ngoại tiếp B'MNP

Ngày đăng: 07/07/2013, 01:27

HÌNH ẢNH LIÊN QUAN

Bài 5. Hình lăng trụ đứng ABC.A'B'C' có đáy ABC là  vuông - Bài tập thể tích Khối tròn xoay
i 5. Hình lăng trụ đứng ABC.A'B'C' có đáy ABC là  vuông (Trang 1)
Bài 12. Hình trụ có bán kính đáy R, thiết diện qua trục là hình vuông. - Bài tập thể tích Khối tròn xoay
i 12. Hình trụ có bán kính đáy R, thiết diện qua trục là hình vuông (Trang 2)

TỪ KHÓA LIÊN QUAN

w