1. Trang chủ
  2. » Giáo án - Bài giảng

hàm số và đồ thị

8 2,3K 52
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Hàm số và đồ thị
Trường học Trường Trung Học Cơ Sở
Chuyên ngành Toán học
Thể loại Kinh nghiệm
Định dạng
Số trang 8
Dung lượng 155 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

kinh nghiệmHớng dẫn học sinh giải một số dạng toán hàm số thờng gặp ở Đại số 9.. Để học sinh hiểu thấu đáo các vấn đề về toán học đòi hỏi ngời giáo viên giảng dạy bộ môn toán phải hết sứ

Trang 1

kinh nghiệm

Hớng dẫn học sinh giải một số dạng toán

hàm số thờng gặp ở Đại số 9.

Phần i : đặt vấn đề

Bộ môn Toán trong Trờng THCS là một bộ môn quan trọng Nó là bản lề cho học sinh học tốt các bộ môn khác Do đó việc giảng dạy toán ở trờng THCS

là vấn đề hết sức nặng nề Để học sinh hiểu thấu đáo các vấn đề về toán học đòi hỏi ngời giáo viên giảng dạy bộ môn toán phải hết sức nhạy bén với sự thay đổi của dạng toán để có phơng pháp phù hợp với học sinh của mình

Hàm số là một vấn đề tơng đối trìu tợng đối với học sinh THCS Trong những năm gần đây trong các đề thi tuyển sinh vào trờng THPT Các bài toán về hàm số chiếm một tỉ lệ khá cao Để giúp cho học sinh nắm đợc các dạng toán về hàm số và giải đợc thành thạo các dạng toán đó Phát huy tính tích cực, tự giác chủ động, sáng tạo của học sinh

Tôi mạnh dạn đa ra kinh nghiệm Hớng dẫn học sinh giải một số dạng toán hàm số thờng gặp ở Đại số 9 Trong chuyên đề này tôi không có tham vọng tổng hợp đợc toàn bộ kiến thức của phần hàm số mà chỉ đa ra các tính chất cơ bản và một số dạng bài toán thờng gặp trong Đại số 9 và các kì chuyển cấp gần đây Để học sinh có thể định hớng đợc và vận dụng để mở rộng ra trong việc giải các bài toán về hàm số

Trớc hết để giải đợc các bài toán về hàm số học sinh cần phải nắm đợc các kiến thức cơ bản sau:

- Các dạng hàm số cơ bản thờng gặp ở Đại số 9

- Ngoài ra học sinh phải nắm đợc TXĐ chiều biến thiên, đồ thị, cách vẽ, các tính chất của hàm số

- Cùng một số kiến thức bổ sung Nội dung của chuyên đề:

+ Trớc hết tôi nhắc lại một số kiến thức cơ bản của các hàm số có bổ sung các kiến thức mới

+ Sau đó đa ra các dạng bài tập có liên quan Chủ yếu là các dạng bài toán

về hàm số: y = ax + b ( a ≠ 0) và hàm số y = ax2 (a ≠ 0) Và bổ sung thêm một số kiến thức về hàm số y = ax2 + bx + c( a ≠ 0)

Qua các dạng bài cơ bản đó học sinh có thể nắm bắt tốt về hàm số đồng thời biết kết hợp các dạng toán lại với nhau để

để làm đợc bài toán tổng quát hơn

Trớc đây đã có rất nhiều các đồng chí giáo viên khác đã làm về vấn đề này nhng tôi vẫn đa ra ý kiến của mình về : " Các bài toán về hàm số" Chắc chắn trong kinh nghiệm này còn nhiều điều cha đầy đủ Rất mong có sự đóng góp ý kiến của các đồng nghiệp trong tổ cũng nh các quí vị đọc bài viết này

Trang 2

Phần ii : Nội dung

A- Các hàm số thờng gặp.

Trong trờng THCS có một số hàm số thờng gặp nh sau:

1 Hàm số y = ax (a ≠ 0)

2 Hàm số y = ax + b (a ≠ 0)

3 Hàm số y = ax2 (a ≠ 0)

4 Hàm số y = ax2 + bx + c (a ≠ 0)

B - Tính chất của từng hàm số

I Hàm số y = ax (a ≠ 0)

1 TXĐ : mọi x thuộc R

2 Chiều biến thiên : Hàm số y = ax (a ≠ 0) :

Đồng biến khi và chỉ khi a > 0

Nghịch biến khi và chỉ khi a < 0

3 Đồ thị : Hàm số y = ax (a ≠ 0)

có đồ thị là một đờng thẳng luôn luôn đi qua gốc toạ độ và đi qua điểm E

( 1; a )

II Hàm số y = ax + b (a ≠ 0)

1 TXĐ : Mọi x thuộc R

2 Chiều biến thiên : Hàm số y = ax + b (a ≠ 0) :

Đồng biến khi và chỉ khi a > 0

Nghịch biến khi và chỉ khi a < 0

3 Đồ thị : Hàm số y = ax + b(a ≠ 0)

- Đồ thị hàm số là một đờng thẳng không đi qua gốc toạ độ giao với trục hoành tại điểm A ( -b/a; 0) , giao với trục tung tại điểm B ( 0; b)

Cách vẽ đồ thị :

- Xác định giao với trục Ox tại A ( -b/a; 0)

- Xác định giao với trục Oy tại B ( 0; b) ;

- Đờng thẳng AB chính là đồ thị của hàm số

4 Chú ý:

Trong trờng hợp hệ số b = 0 thì hàm số y = ax + b suy biến thành hàm

số y = ax(a ≠ 0)

5 Kiến thức bổ sung

a) Hệ số góc : Xét hàm số y = ax + b có :

- Hệ số a gọi là hệ số góc

- Hệ số b gọi là tung độ góc

- Mặt khác a = tg α ( trong đó α là góc tạo bởi đồ thị hàm số và chiều dơng của trục hoành )

b) Vị trí tơng đối của hai đờng thẳng:

Xét hai đờng thẳng y = a x + b ( d ) Và y = a x + b ( d ) ta có các trờng hợp

Trang 3

sau xảy ra : + ( d1) cắt ( d2) khi và chỉ khi a1 ≠ a2

( Trờng hợp đặc biệt ( d1) ⊥ ( d2) khi và chỉ khi a1 a2 = -1 )

+ ( d1) song song ( d2) khi và chỉ khi a1 = a2 ; b 1 ≠ b2

+ ( d1) trùng ( d2) khi và chỉ khi a1 = a2 ; b 1 = b2

c) Tính toạ độ trung điểm của đoạn thẳng AB: Gọi I là trung điểm của đoạn thẳng

AB trong đó điểm A ( xA; yA) và điểm B ( xB; yB) Ta có : I ( xI; yI)

+

=

+

=

2

2

B A I

b A I

y y y

x x x

d) Công thức tính độ dài đoạn thẳng:

Xét điểm A( xA; yA) và điểm B( xB; yB) ta có

AB = (x A+x B) 2 − (y A +y B) 2

III Hàm sổ : y = ax 2 (a ≠ 0)

1 TXĐ : mọi x thuộc R

2 Chiều biến thiên:

+ a, x cùng dấu : Hàm số đồng biến

+ a, x trái dấu : Hàm số nghịch biến

+ Hàm số bằng O khi x= o

3 Đồ thị

Hàm số y = ax2 có đồ thị :

+Là một đờng cong Parabol luôn đi qua gốc toạ độ

+ Nếu * a>0 : Bề lõm quay lên trên

* a<0 : Bề lõm quay xuống dới

+ Nhận trục tung làm trục đối xứng

4 Vị trí tơng đối của đờng thẳng và đờng cong:

Xét đờng thẳng y = mx + n (d) và đờng cong y = ax2 (P)

Phơng trình hoành độ giao điểm ( nếu có) là: ax2 = mx + n (*)

Phơng trình (*) có biệt số ∆

+ Nếu ∆ < 0 => (d) không cắt (P)

+ Nếu ∆ = 0 => (d) tiếp xúc với (P)

+ Nếu ∆ >0 => (d) cắt (P) tại hai điểm phân biệt

5 Hàm số y = ax2 + bx + c (a ≠ 0) (Mở rộng cho học sinh giỏi )

Hàm số y = ax2 + bx + c có các tính chất tơng tự nh hàm số y = ax2 Ngoài ra nó còn có các tính chất khác nh sau:

+ Toạ độ đỉnh : A 

a a

b

4

;

+ Giao với Oy tại B (0;c);

+ Giao với Ox tại điểm có hoành độ giao điểm là nghiệm của phơng trình :

ax2 + bx + c = 0

+ Nhận đờng thẳng x = −2b a làm trục đối xứng

Trang 4

Cách vẽ đồ thị hàm số:

Xác định các điểm đặc biệt đã nêu ở trên và xác định điểm B' đối xứng với B qua

đờng thẳng x = −2b a Rồi vẽ

C Các dạng bài thờng gặp

I Dạng 1: Viết phơng trình đờng thẳng đi qua hai điểm A( xo;yo) và điểm B( x1;y1)

Phơng pháp giải

Gọi phơng trình đờng thẳng cần tìm là : y = ax + b (d)

- Vì (d) đi qua điểm A( xo;yo) Ta có : y0 = axo + b (1)

- Vì (d) đi qua điểm B( x1;y1) Ta có : y1 = ax1 + b (2)

Từ (1) và (2) ta có hệ:

+

=

+

=

) 2 (

) 1 (

1

1 ax b y

b ax

y o o

Giải hệ phơng trình tìm đợc a và b

Vậy phơng trình đờng thẳng cần tìm là y =

* Ví dụ 1: Viết phơng trình đờng thẳng đi qua điểm A(1;2) và B(-3;-2) 2) Cho đờng thẳng y=(m-2)x+n (m≠2) (d) Biết (d) đi qua hai

điểm A(-1;2) và B(3;-4)

Giải

1 Gọi phơng trình đờng thẳng cần tìm là y = ax + b (d);

- Vì ( d) đi qua A(1;2) Ta có : a + b = 2 (1)

- Vì ( d) đi qua B(-3;-2) Ta có : -3a + b =- 2 (2)

Kết hợp (1) và (2) ta có hệ :

= +

= +

2 3

2

b a

b a

Giải hệ phơng trình ta đợc a = 1 và b = 1;

Vậy phơng trình đờng thẳng cần tìm là y = x + 1

2 Gọi phơng trình đờng thẳng cần tìm là y=(m-2)x+n (m≠2) (d)

Vì (d) đi qua điểm A(-1;2) nên : 2=(m-2)(-1)+n

Vì (d) đi qua điểm B(3;-4) nên :-4=(m-2)3+n

Ta có hệ phơng trình:

= +

= +

<=>

+

=

+

=

2 3

0 3

) 2 ( 4

) 1 )(

2 ( 2

n m

n m n

m

n m

Giải hệ phơng trình tìm đợc: m=n=1/2

Vậy phơng trình đờng thẳng (d) là: y=-23x+21

* Nhận xét :

Dạng toán này nhằm củng cố cho học sinh định lý : " Nếu điểm A (xo;yo) nằm trên đờng thẳng y = ax + b (a ≠ 0) thì toạ độ (xo;yo) sẽ thoả mãn phơng trình của

đờng thẳng và ngợc lại"

Đối với học sinh giỏi thì có thể phát triển dạng toán này thành bài toán tổng quát hơn là : " Chứng minh ba điểm A, B, C thẳng hàng"

Phơng pháp giải:

+ Viết phơng trình đờng thẳng AB

Trang 5

+ Xét xem điểm C có thuộc đờng thẳng AB không.

+ Kết luận

Ví dụ: Chứng minh rằng ba điểm A(2;3), B(1;-1); C(-1;9) thẳng hàng Giải

Gọi phơng trình đờng thẳng AB là : y = ax + b ( d)

- Vì (d) đi qua A(2;3) Ta có : 2a + b=3 (1)

- Vì (d) đi qua B(1;-1) Ta có : a + b=-1 (2)

Từ (1) và (2) ta có hệ :

=

=

= +

= +

5

4 1

3 2

b

a b

a

b a

=> Phơng trình đờng thẳng AB có dạng là y = f(x) = 4x - 5

Xét khi x = -1 Ta có f(-1) = 4.(-1) -5= -9 = yC

Vậy toạ độ của C thoả mãn phơng trình đờng thẳng AB Vậy 3 điểm A,B,C thẳng hàng

* Bài tập áp dụng

Bài 1 : Tìm a và b để đồ thị hàm số y = ax + b ( d) đi qua A ( -1;-3) và

B(2;5)

Bài 2 : Viết phơng trình đờng thẳng đi qua M (1;3 2) và N (2;4 2)

Bài 3: Tìm m để đồ thị hàm số y = mx + m2 - 2m đi qua điểm E(1;2)

II.Dạng 2: Viết phơng trình đờng thẳng đi qua A(xA;yA) và song song với

đờng thẳng y = mx + n (d) (m≠ 0)

Phơng pháp giải:

Gọi phơng trình đờng thẳng cần tìm là : y = ax + b (d')

- Vì (d') // (d) => a = m

do đó phơng trình đờng thẳng cần tìm là : y = mx + b

=> b = yA - mxA.

Vậy phơng trình đờng thẳng cần tìm là : y= mx+(yA-mxA)

Ví dụ: Viết phơng trình đờng thẳng đi qua A (1;7) và song song với đờng

thẳng y = 3x - 2 (d)

Giải

Gọi phơng trình đờng thẳng cần tìm là : y = ax + b ( d')

- vì (d') // (d) => a=3;

Do đó phơng trình đờng thẳng (d') có dạng y = 3x + b

Vì (d') đi qua điểm A ( 1;7) nên ta có: 7= 3.1 + b

=> b = 7 - 3 => b=4 Vậy phơng trình đờng thẳng cần tìm là y = 3x+ 4

* Bài tập áp dụng

Viết phơng trình đờng thẳng đi qua A(1;3) và song song với đờng thẳng

a) y=-2x+3

b) y=3x-4

c) y = mx+ 3m + 1 ( m là hằng số)

d) x-2y=3

III Dạng 3 :Viết phơng trình đờng thẳng đi qua điểm A (xA;yA), và vuông góc với đờng thẳng y= mx + n ( d)

Trang 6

ơng pháp giải

Gọi phơng trình đờng thẳng cần tìm là y = ax + b

Vì (d') ⊥(d) => a.m = -1 => a= -1/m Do đó phơng đờng thẳng y = x b

−1

- Vì (d') đi qua điểm A (xA; yA) Ta có yA = x b

− 1

=> b=yA+ x A

m

1

Vậy phơng trình đờng thẳng cần tìm là y = 1 ( A 1 x A)

m y x

* Ví dụ: Viết phơng trình đờng thẳng đi qua A(1;1) và vuông góc với đờng

thẳng y = 3

2

x (d)

Ph

ơng pháp giải

Gọi phơng trình đờng thẳng cần tìm là y = ax + b (d')

Vì (d') ⊥(d) => a.(−21 ) = -1 => a= 2 Do đó phơng trình đờng thẳng (d') có dạng : y = 2x + b

- Vì (d') đi qua điểm A (1;1) Ta có 1 = 2.1+ b => b= -1

Vậy phơng trình đờng thẳng cần tìm là y = 2x - 1

Bài tập áp dụng

Bài 1: Viết phơng trình đờng thẳng qua A( 2;3) và vuông góc với đờng

thẳng:

a) y = 2x -1

b) 3x + 5y = 8

Bài 2 : Tìm m để đồ thị hàm số y = (m - 2)x + 3 vuông góc với đờng thẳng

có phơng trình là ; x-2y = 3

Nhận xét: Hai dạng toán 2 và 3 nhằm củng cố cho học sinh về vị trí tơng

đối của hai đờng thẳng Trong thực tế giảng dạy giáo viên cần nêu bật đợc vấn đề

là hai dạng toán này thực tế là viết phơng trình đờng thẳng cho biết trớc hệ số góc Tuy nhiên hệ số góc này đã đợc cho dới dạng ẩn sau việc song song hoặc vuông góc với đờng thẳng khác

Sau khi học sinh đã thành thạo với dạng 1 , 2, 3 thì có thể nâng cao kiến thức về hàm số bằng cách có thể đa thêm kiến thức hình học vào đối với học sinh giỏi

Ví dụ nh :

Viết phơng trình đờng trung trực của đoạn AB

Viết phơng trình đờng trung tuyến, đờng cao, đờng trung bình của tam giác

Vận dụng công thức tính độ dài đoạn thẳng và định lý Pitago cùng các công thức về diện tích để tính chu vi hoặc diện tích của các hình tạo bởi các đồ thị hàm số trên mặt phẳng toạ độ Hoặc chứng minh một tam giác là vuông

Ngày đăng: 14/06/2013, 01:25

TỪ KHÓA LIÊN QUAN

w