1. Trang chủ
  2. » Giáo Dục - Đào Tạo

bài tập toán 11 (cực hay)

30 1K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 5 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

II.Biến đổi về phương trình tích:1.

Trang 1

1.sin 32 x−cos 42 x=sin 52 x−cos 62 x

2.sinx+sin 2x+sin 3x=0

3.sinx+cos 2x−cos 4x=0

4.cos cos 2 cos 4 cos8 1

11 tanx+cotx=2(sin 2x+cos 2 )x

12.cos3x−sin3x=sinx−cosx

13.sinx+sin 2x+sin 3x=cosx+cos 2x+cos3x

14.2cos3 x+cos 2x+sinx=0

15.(2sinx+1)(3cos 4x+2sinx− +4) 4cos2 x=3

16.sin6x+cos6x=cos 4x

cosx+sin 2x =sin 4x

21 cos (cos 2sin ) 3sin (sin 2) 1

252sin2x(4sin4x− =1) cos 2 (7 cos 2x 2 x+3cos 2x−4)

26.3cos4x−4cos2xsin2x+sin4 x=0

37 5sinx+cos 2x+2cosx=0

38 5cosx−cos 2x+2sinx=0

39.( 1 cos cos ) cos 2 1sin 4

44 cosx+cos 2x+cos3x+ =1 0

45.sin2x=cos 22 x+cos 32 x

48.3tan 2x−4 tan 3x=tan 3 tan 22 x x

49.cos3x−4sin3x−3cos sinx 2x+sinx=050.1 3tan+ x=2sin 2x

51.sin 3x−2sinx=4cos3x−3

53.sin sin 2x x+sin 3x=6cos3x

54.tanx−tan 2x=sinx

55 4cosx−2cos 2x−cos 4x=1

56.4cos3x−cos 2x−4 cosx+ =1 0

57.cos 3x−2cos 2x+cosx=0

58.sin 5 15sin

67.sin4x−cos4 x=2 3 sin cosx x+1

68 2 2(sinx+cos ) cosx x= +3 cos 2x

69 4sin 2x−3cos 2x=3(4sinx−1)

70.cos3x+sin3x=sin 2x+sinx+cosx

Trang 2

71 4 4 1

x+ x+π =

72.9sinx+6cosx−3sin 2x+cos 2x=8

73 tanx−3cotx=4(sinx+ 3 cos )x

74.sinx−4sin3x+cosx=0

76.sin cosx x+2sinx+2cosx=2

77.sin3 cos3 1 tan( ).tan( )

80.2sin3x−cos 2x+cosx=0

81.sin3x+cos3x=2sin 2x+sinx+cosx

82.2sin3x−sinx=2cos3x−cosx+cos 2x

86.2sinx+cotx=2sin 2x+1

87.3(cotx−cos ) 5(tanxx−sin ) 2x =

95.sin 8x+cos 2x−sin 2x=2cos2x+1

96.4cosx−2 cos 2x−cos 4x=1

97.sin 3 (cos 2sin 3 )cos3 (1 sin 2cos3 ) 0

99.sin 3x+cos 4x−4sin 7x=cos10x+sin17x

100.8cos 4 cos 2x 2 x+ 1 cos3− x+ =1 0

101 sinx+sinx+sin2x−cosx=1

113.(cos 4x−cos 2 )x 2 = +5 sin 3x

Trang 3

a sinx−cosx +4sin 2x=1 b sinx+ +1 cosx+ =1 1

4

x+ x−π =

  . d 2 sin 3+ x−cos3x=sinx+cosx.

e sin3x+cos3x=sin 2x+sinx+cosx g cos sinx x+ sinx+cosx =1.(ĐH QGHN 97)

a (t anx+7 t anx + co t x+7 cot x = -14) ( ) b 2 2 1( )

a cos5xcos3 = cosxcos7x b sin2x - cos5x = cosx - sin6x

c cosx + cos11x = cos6x d sinx + sin2x + sin3x = cosx + cos2x + cos3x

sinx sin 2x sin3x sin 4x sin 5x sin 6x 0 cos cos5x x=cos2 cos4x x

e tanx + tan2x = tan3x g sinx+sin3x+sin5x tan 32

cos x cos x cos x+ + =

c 8cos4x = 1 + cos4x d sin4x + cos4x = cos4x

2sin 2x+2sinx− =1 4sin xcosx cos x+ 2 −2sin cos 2x x 79.sin 2 (sinx x+cos )x = 2

e 3cos22x - 3sin2x + cos2x g sin3xcosx - sinxcos3x = 2

sinx+ 2 sin− x+sinx 2 sin− x+ =1 0 c) 3cosx(1−cos2x)+2sin2x+sinx+cos2x=0

1 1 3sin 2+ x=2 tanx 2 (1 t anx 1 sin 2− ) ( + x)= +1 t anx

3 t anx.sin2x−2sin2x=3 os2x+sinx.cosx(c ) 4 3cos 4sin 6 6

Trang 4

2 2 21

sin 4 cos 6 sin 10

2

xx=  x+ π 

3

2sin x+cos 2x+cosx=0

2sinx+cotx=2sin 2x+1

sin cos 4 sin 2 4sin

x

x xx= π − −

cos 4x=cos3 cosx x+sin xsin 3x

2 1 sin sin sin2 cos 2cos2

3

+

4 cosx+cos 3x+2 cos 5x=0

5 sin 3 sin 5

x = x

2sinx+1 3cos 4x+2sinx− +4 4cos =3

sin x+cos x=cos 2x

sin x + cos x = 1

(sinx+ 3 cosx)sin 3x=2

sinx sin 2x sin3x cosx cos2x cos3x

tanx tan 2x sin3 cosx x

8 8 1 sin 2 cos 2 8 x+ x= 2 8cos 4 cos 2x x+ 1 sin 3− x+ =1 0 1 cos 4 3cos 4sin2 2 x xx= 2 3 3 cos sin 2cos 2 cos sin x x x x x − = + 3 4 cos( 2 x+ 3 cosx+ +1) 2 3 tanx+3tan2x=0 4 2sin2xcos 42 x=sin2x+cos 42 x 5 ( ) 2 2 sinx+cosx = +2 cot 2x 22 sin 2 sin 1 1 2cot 2 2sin sin 2 x x x x x + − − = 23 2cos2 x+2 3 sin cosx x+ =1 3 sin( x+ 3 cosx) 24 sin 5 cos 2 cos3 2 4 2 4 2 x π x π x  − −  − =  ÷  ÷     25 sin 2 cos 2 tan cot cos sin x x x x x + x = − 26 2 2 sin cos 1 12 x π x  −  =  ÷   27 4 4 sin cos 1 1 cot 2 5sin 2 2 8sin 2 x x x x x + = − + = + sinx sin 2x cosx cos2x − − = cos cos3x x sin 2 sin 6x x sin 4 sin 6x x 0 28 2 4 4 (2 sin 2 )sin 3 tan 1 cos x x x x − + = 30 12 sin 8cos x = x 31 ( ) 2 2 3 cos 2sin 2 4 1 2 cos 1 x x x π   − −  − ÷   = − 2 2 cos 4 6 s 1 3cos 2 0 cos x co x x x + + + = 1 cos 1 sin 2 ) 1 cos 2 ( cos 1 = − − + − x x x x 2 3cosx− = − −2 3(1 cosx).cot x 6 6 2 sin x cos x+ =2cos x−1 2 2 4sin 2 6sin 9 3cos 2 0 cos x x x x + − − = ( ) 2 cos 2 3 2 2 1 1 1 sin 2 x sinx cos x x + − − = + 2 5sinx− =2 3(1−sinx).tan x 8 8 17 2 sin 2 16 x cos x+ = cos x x x x x 3sin6 2cos4 3cos2 2 cos 4 3 + = +

8sinx 3 1 cosx sinx = +

sin2x−cos2x−cosx−sinx=0

8 2 cos 2 sin 3 cos 3 sin 9 x+ xx+ x=

2cos x3 +cos 2x sinx+ =0

sin x cos x sinx cosx3 + 3 = −

4(sin4x cos x+ 4 )+ 3 sin 4x=2

3(sin3x−cosx)=cos3x+sinx

x x x x 3cos9 2cos3 4sin 3 3 sin 3 − = + 3 8 3 1 sin cosx x cosx = + + − = sinx cos2x sin3x 0

sinx+4cosx−sin 2x+2cos 2x=1 2sin3x−cos 2x cosx+ =0 sin x cos x sinx cosx3 − 3 = + 8(sin6 x+cos6 x)−3 3sin4x=2 3(cos3x+sinx)=sin3x−cosx x x x x sin cos cos2 tan = − (1) sinxsin2x + sin3x = 6cos3x sin3x + cos3x + 2cosx = 0 sinx – 4sin3x + cosx = 0

3 3 sin x cos x sinx cosx− = +

(sin cos ) 3 3sin4 2 8 6 x+ 6 xx=

3(cos3x+sinx)=sin3x−cosx

Trang 5

3 3

sin x cos x sinx cosx+ = −

(sin x cos x+ )+ 3 sin 4x=2

3(sin3x−cosx)=cos3x+sinx

sin x cos x+ =2cos x−1

2

1cos

3) cos3x+cos2 x+2sinx−2=04) (3+sinx) (3+sin2 x)=8(2−cosx)5) cos2x(1+sinxcosx)+cosx+sinx=06) sin3 x−3sin2 x−6cosx+6=0

sinx sin3x sin 4x

sinx sin 2x sin3x 0

g 2cos cos( ) 4sin 2 1

3sin2

b) sin22x+cos23x=sin2 x+cos24x

c) sin3x−4cos2x−3sinx+4=0

2

1sin2cos

3

2cos2

cossincos

sinsin

=

−+

+

x

x x x x x

x x

sin

cossin4cos

1cot

0sin

22

34

cos4sin2cos

+

x

x x

x

b) (sinx+cosx)cotx=cos2x.cosx+2sin3x+cos3x+sin2x.cosx

c) 10cos2 x+cosx−2=3(cosx−cos2x).cotg2x c)

(1 sin 2− x) (cosx−sinx) = −1 2sin2x

d) (2cosx− 3) (2sinx+cosx)=sin2x− 3sinx

cos x+cos 2x+cos 3x+cos 4x=2

a) 1+sinx−cosx−sin2x−cos2x−sin3x+cos3x=0

b)

x x

x

tan

1cot

.cos

sin

1− + =

c) 1+(1+sin2 x)cosx=sin2x+sinx(1+cos2 x)

d) tan2x−2tanx+cot2x+2cotx−2=0

2sin34

cossin

=

−+

−+

x x

x x

x x

b) sin23x.cos2x+sin2 x=0

32cos5

2cos2cossin

++

x

x x

x x

x

d) sinx.tanx+sin2x=tanx

e) 1+(1+sin2 x)cosx=sin2x+sinx(1+cos2 x)

g) 2cos2 x+cosx=1−cos7x

a) (1−sin2 x)cosx−(1−cos2 x)sinx=sin2x−1 ;

2

cos2sin

2

+

=+

3sin

12

x x x

x 3cos cos2 sin cos 3sin cos

)cos1)(

cos21(

sincos2

x x

2cos

3sin3cos

2cos

=+

x

x x

x

cos

cossin43cos

8 cos

22x cos8x+sin8x= 1

8 cos6x+sin6x=cos4x

b)tan 4 tanx x= −1 c) 3 tan 2+ x=2;(0< < πx 2 )

d) tan tan 1 tan tan tan tan ;( 2 2 )

Trang 6

sau đó giải phương trình 10 2 5 tan+ x= 5 1;− −π < < π( x )

8

x+ x=

c) 6 6

cos x−cos 2x+2sin x=0

e)cos cos33 sin sin 33 5

8

x xx x= f)cos cos33x x+sin sin 33x x=cos 43 x

g)cos cos33 sin sin 33 1

7)sin 6x+ 3 cos 6x=2 8)2 sin( x+cosx) =4sin cosx x+1 9)sin 2x−12 sin( x+cosx)+ =12 0

10)sin 2x−12 sin( x−cosx)+ =12 0 11) 2 2

sin x+3sin cosx x+2cos x=0

2sin x−5sin cosx x−8cos x= −2

14)3 sin( x+cosx)+2sin 2x+ =3 0 15)sinx−cosx+4sin cosx x+ =1 0

16)sin 2x−12(sinx−cos ) 12 0x + = 17) 3 3

sin x+cos x=1

4sin x+3 3 sin 2x−2cos x=4

20)sin2 sin 2 2cos2 1

1)sin17 cos3x x=sin11 cos9x x 2)sin 5 sin 4x x cox x= 3 sin 2x

3)sinx+sin 2x+sin 3x=cosx+cos 2x cox x+ 3 4)sin 3x+sin 5x+sin 7x=0

5)tanx+tan 2x=tan 3x 6)sinx= 2 sin 5x−cosx

7)3 2sin sin 3+ x x=3cos 2x 8) 2sin cos3x x− +1 2cos 2x−sinx=0

Trang 7

2cos 4x+sin10x=1 12)(1 tan− x) (1 sin 2+ x) = +1 tanx

13) tanx+tan 2x=sin 3 cosx x 14) tanx+2cot 2x−2 cot 4x

15)sin sin 4 2 cos 3 cos sin 4

6

x x= π−x− x x

  16)sinx+sin 2x+sin 3x= +1 cosx+cos 2x

17)sin2 1sin 32 sin sin 3

4

x+ x= x x 18)2cos 2x−sin 2x=2 sin 2( x+cosx)

19)cos10x−cos8x−cos 6x+ =1 0 20)cotx−tanx=sinx+cosx

cos 2x−cos 4x = +4 cos 3x

a)4sin2x−2 3 tanx+3tan2x−4sinx+ =2 0 b)3tan 2x−4 tan 3x=tan 3 tan 22 x x

a) 2sinx+cotx=2sin 2x+1 b)1 3tan+ x=2sin 2x c)5sin 3x=3sin 5x

a)3 7 tan+ x+3 2 tan− x =3 b)3sin2x+3 cos2 x =3 4 f) 2

sinx+sinx+sin x+cosx=1

c)sinx+ 2 sin− 2x+sinx 2 sin− 2x =3 d)410 8sin+ 2x−48cos2 x− =1 1

(2cos 1)(2sinx cos ) sin 2x x sinx

1 sin+ x+cosx+sin 2x+cos2x=0

(2cosx−1)(sinx+cos ) 1x =

2sin cosx x+2 cos2x−(sinx+cos ) 1x =

sin cos33x x+cos sin33x x=sin 43 x

s cos33 +sin sin33 = 2

sin 2x+4 cosx− =1 sinx−2 cos2x sin 2x+cos2x−3sinx−cosx− =2 0

2(2sinx+1)(3cos 4x+2sinx− +4) 4cos x=3

cos x+sin x+cosx=0 13) cos 3x−cos 4x+cos5x=0 sin 2x+cos2x+3sinx−cosx− =2 0

Trang 8

10) sinx+cosx=0 11) tan2x−cot2x=0 12) tan2x+cot2x− =2 0

10) 8cos 2 sin 2 cos 4x x x= 2 11) tan 2x−2 tanx=0 12) 2cos2x+cos 2x=2

5) 3tanx+ 3 cotx− −3 3 0= ; 6) 2 2

sin 2 2

tansin 2 4 cos

2cos22

2

x x

2

5cos2

sin2

3cos2

7

3)

6cos.3)23(cos)22(cos)2

(

cos2 x+π + 2 x+π + 2 x−π = π sin 7 sinx x =sin3 sin 5x x

6) 2sinx+cosx=sin2x+1 3/ tanx sin2x-2sin2x=3(cos2x+sinxcosx)

1.2sin3x+cos2x+cosx=0 ; 8 sin (2 2 4x−π).tg x2 −cos2 2x =0

;

2 sin cos4x x−sin 22 x=4sin (2 π4 2− x)−72

; 9 cos (cos2 1) 2(1 sin )

sin x+sin 3x=2sin 2x 109.sinx+cosx= 2(2 sin 2 )− x 110.sin2009x+cos2009x=1

6 3 tan (tan− x x+2sin ) 6 cosx + x=0 ; 13 cot −tan +4sin 2 = 2

sin 2

x;

7 cos2x+cos (2 tanx 2x− =1) 2 21)sin 3 cosx( x−2sin 3x)+cos3 1 sinx( + x−2cos3x)=0

14.tan +cos −cos2 =sin (1 tan tan )+

+ − = 16/ 2cosx- sin x =1

13/ sinx+ +1 cosx =0 14/ cos2x+3cosx+2=0 2/ sin3x+cos3x=2sinxcosx+sin x+cosx

15/4sin 22 6sin4 9 3cos 2 0

1 cos cos 2 cos 3 2(3 3 sin )

cos x b/ sin x+cosx=

Trang 9

4/ 2sinx+cotx=2 sin2x+1 5/ 2 sin2x(sin x+cosx)=2

6/ (1+sin x)(1+cosx)=2 7/ 2 (sin x+cosx)=tanx+cotx

8/1+sin3 2x+cos32x=3

2sin 4x 9/

* a* 3(cotx-cosx)-5(tanx-sin x)=2 9/b*: cos4x+sin4x-2(1-sin2xcos2x) sinxcosx-(sinx+cosx)=0

12/ sinxcosx+ sinx+cosx =1 18/cos10x+2cos24x+6cos3xcosx=cosx+8cosxcos23x

1/ sin2 x+sin23x=cos22x+cos24x 2/ cos2x+cos22x+cos23x+cos24x=3/2

5/ sin24x+ sin23x= cos22x+ cos2x víix∈(0; )π

6/sin24x-cos26x=sin(10,5π+10x) víi (0; )

2

x∈ π

7/ cos4x-5sin4x=1 8/4sin3x-1=3- 3 cos3x 9/ sin22x+ sin24x= sin26x

10/ sin2x= cos22x+ cos23x 11/ (sin22x+cos42x-1): sin cosx x=0

12/ 4sin3xcos3x+4cos3x sin3x+3 3 cos4x=3 ;

20 / cos7x+ sin22x= cos22x- cosx 21/ sin2x+ sin22x+ sin23x=3/2

22/ 3cos4x-2 cos23x=1 2/ cos3x-sin3x=cos2x-sin2x 11/ 1+ sinx+ cos3x= cosx+ sin2x+ cos2x 3/ cos3x+ sin3x= cos2x 4/

7/ cos6x+sin6x=2(cos8x+sin8x) 8/cos3x+sin3x=cosx-sinx

9/ cos6x+sin6x=cos4x 10/ sinx+sin2x+sin3x+sin4x= cosx+cos2x+cos3x+cos4x

3/sin2x-cos2x=3sinx+cosx-2 4/sin3 x+2cosx-2+sin2 x=0

cos x 10/ cos8x+sin8x=2(cos10x+sin10x)+5

4cos2x 12/ 1+sinx+cosx+sin2x+cos2x=0 13/ sin2 x(tanx+1)=3sinx(cosx-sinx)+3

10/a* tan2x+sin2x=3

2cotx 20/ 2tanx+cot2x=2sin2x+ 1

sin 2x 21/cosx(cos4x+2)+ cos2x-cos3x=0 b* (1+sinx)2= cosx 22/ 1+tanx=sinx+cosx 23/ (1-tanx)(1+sin2x)=1+tanx

Trang 10

5/ sin4x=tanx 6/ sin2x+2tanx=3 7/ sin2x+cos2x+tanx=2

8/tanx+2cot2x=sin2x 9/ cotx=tanx+2cot2x

1/ sin8x+ cos4x=1+2sin2xcos6x 2/cosx+cos2x+cos3x+cos4x=0

3/sin 3 sin sin 2 cos 2

+

− =3 x={kπ α; +kπ}, tanα=2 1/ 3 4 6 (16 3 8 2)cos+ − − x =4cosx− 3 2

x= ± π+k π 6/sin3x+cos3x+ sin3xcotx+cos3xtanx= 2sin 2x 2

1/ cos3x+ 2 cos 3x − 2 =2(1+sin22x) x k= π 2/ 2cosx+ 2 sin10x=3 2 +2sinxcos28x x= +π4 kπ

3/ cos24x+cos26x=sin212x+sin216x+2 víi x∈(0;π) 4/ 8cos4xcos22x+ 1 cos3x− +1=0 2 2

Trang 11

10 2 (cosx) - cos2x = 1 + sinx( 1 - ) 8 cosx - cos3x = cos( - x) - cos( +x)

4 3tanx + 4 tanx + 4cotx + 3cotx + 2 = 0 7)cos22x=sin22x− 3sin4x+2

130cos2

1)

182sin(

50)182

44cossincos

4sin

cos

2

1)45cos(

)15sin( o +x + o +x + =11)sinx(1-sinx)=cosx(cosx-1) 15)sinx+ 3cosx+ sinx+ 3cosx =2

14) 3sin2x−2cos2x=2 2+2cos2x b) (m−2)sin2x−2(m+2)cosx−cos2x=0

1cos4sin3

6cos

4

sin

++

++

x x

x

x x

x x

sin

1cos

3cos

32sin

5 x ) 2sinx

4(

23) sin 5 cos3x x=sin 6 cos2x x

72 (1−cos4 sin 4x) x= 2 sin 22 x

98) cos 4 sin3 cosx+ x x= sin cos 3x x

100) cosx+ 3 sinx=2 os3c x

101) tanx+tan 2 tan 3 x= x

104) cos 1 tanx( − x) (sinx+cosx)=sinx

201) cos5 sin 4x x=cos3 sin 2x x

102) ( 2sinx−cosx) (1 cos+ x) =sin2 x

103) (1 cos 2 )sin 2− x x=sin 2 x

Trang 12

105) cotx−tanx=sinx+cosx

203) sinx+sin 2x+sin3x=cosx+cos2x+cos3x

204) sin3x+sin 5x+sin 7x=0

205) cos2x+cos 22 x+cos 32 x=1(*)

1) 4cos3x+3 2 sin 2x=8cosx

5) 2cos 2x−4cosx=1 víi sin x > 0

1 sin2x−2sinx+ =2 2sinx−1

4 sin 3x sin 6x sin 9x=

5 sin x cos3x sin 3x cos x3 3 3

8

6 sin8x cos6x− = 3 sin 6x cos8x( + )

7 cos3x cos 2x sin 3x− =

8 3sin x+ 3 cos3x 1 4sin x= + 3

9 2sin x 1 cos 2x( ) sin 2x ,3

4 2 trªn π π

2cos 4x cos 2x 4cos 2x 3cos 2x= −

12 4cos x sin 30( 0 +x cos 60) ( 0+x) =cos 3x2

cos x

17 tg5x tg3x=

18 tg2xtg7x 1=

19 (2sin x cos x 1 cos x− ) ( + ) =sin x2

20.1 sin x cos 2x sin x cos 2x+ = +

21 sin x cos x cos 4x4 + 4 =

22 3sin x 2sin x cos x cos x 02 − − 2 =

Trang 13

cos 4x+ cos 2x sin x− =5

2 2(tan x − sin ) 3(cot x + x − cos ) 5 0 x + =

sin x + cos x = 2(sin x + cos ) x

38 sin x sin 2x sin 3x cos x cos 2x cos3x+ + = + +

tan x − cot x − 3(tan x + cot ) 3(tan xx − cot ) 10 0 (1) x + =

5 2cos2 (1 sin ) cos2 0

2

x

− + = 6 sin3x + cos3x = sin 2 x + sin x + cos x

7. 4(sin4x + cos )4x + 3sin 4 x = 2 8 8 8 17

x

x

=

1 2(tan x + cot ) tan x = 7x + cot7x 2 tan3x + tan2x + cot2x + cot3x − = 4 0

3 5(tan x + cot ) 3(tan x − 2x + cot ) 8 02 x − = 4 2 11 12

tan 2(tan cot )

x 6 sin x + cos x = tan x + cot x

7 8(tan4x + cot ) 9(tan4x = x + cot ) x 2− 10 sin cos33x x + sin 3 cos x 3x = sin 43 x

x = cos 2 2sin cos

3 2cos sin 1

x

2

sin3 x = cos cos 2 (tan x x x + tan 2 ) x tan2x − 3tan x − 9cot x + 9cot2x + = 2 0

2 cos x + sin x = 1 cos 2 x + cos 4 x + cos6 x = cos cos2 cos3 x x x + 2

2 sin cos sin cos

sin 2 2 sin cos

Trang 14

sin 4x+sin 3x=sin 2x+sin x 111.cos13x+sin14x=1 106.sin2x+ =2 sin 32 x+2sinx

112.2|sin |x+| sin | cosx = x−cos2x+1 3sin4 x+5cos4 x− =3 0 cos6 cosx x=cos3 cos4x x

cos cos 2 cos 2 cos3 sin

2cos x + cos 2 x + sin x = 0 2sin3x − cos 2 x + cos x = 0

cos x + cos3 x + 2cos5 x = 0 ( sin 3 sin ) 4 ( sin 3 sin ) 2 1 0

cos10 x + 2cos 4 x + 6cos3 cos x x = cos x + 8cos cos x x

cos2x + sin3x + cos x = 0 ( ) 2 cos3x + sin3x = cos x + sin 2 x + sin x

( )

cos 4 x + cos 8 x = sin 12 x + sin 16 x + 2 1 tan2x + tan2 y + cot (2 x y + = ) 1 ( ) 5

Trang 15

( )3

cos 2 x − cos6 x + 4(3sin x − 4sin x + = 1) 0 2 8 8 10 10 5

sin cos 2(sin cos ) cos2

4 x − 2+ x.cos xy + 2y = 0 ( sin x + 3 cos sin 3 x ) x = 2

3 2

2 x+ = 2cos x 18 cos 2 x − cos6 x + 4(3sin x − 4sin3x + = 1) 0

19 3sin x − − 2sin2 x − 4cos x + = 6 0 20 4sin2x + sin 33 x = 4sin sin 3 x 2 x

22 sin x + sin y + sin z + = 6 2 1 sin ( + x + 1 sin + y + 1 sin + z )

Trang 16

3cos cos cos2

4 4 sin cos cos 2

2sin12

sin

2

sin2cos

2

4 4

π+

x

23

a) sin6 x+cos6 x+sin 2 cos 2x x=0 sin2 x−sin 2x−3sinx−2cosx− =4 0

b) 2sin 2x−cos 2x=7 sinx+2 cosx−4 8cos4x−4cos 2x+sin 4x− =4 0

c) sin 2x+2 cos 2x= +1 sinx−4 cosx

I.Sử dụng phép biến đổi lượng giác để đơn giản phương trình:

Trang 17

II.Biến đổi về phương trình tích:

1)

Trang 19

VI.Các phương trình lượng giác đặc biệt:

x

=

24sin

6

x y

x π

=

Ngày đăng: 05/07/2015, 08:16

TỪ KHÓA LIÊN QUAN

w