Luận văn thạc sĩ toán học: Phương pháp bậc Tôpô cho bài toán biên
Trang 1Chu'dng 4
"
Ung d\lng
Chung t6i trlnh bay mQt s6 ti'ngdl,lngcua cac b~t qua chuang 2 va chuang 3
GQiC 1£1t~p tiit ca cac phi@mham { : X -7 IR lien tl,lCtang, kh6ng nhiit thi@t tuy@n tfnh, saD cho {(a) = o Cac ph~n tv cua t~p C cling
co mQt tinh chiit nhu cac ph~n tv cua A da dU<;5cnoi tai d chuang 1:
n@u { E C thl {(x) = 0 vai mQt x E X naG do se cho ta x(~) = 0 vai mQt ~E J.
B5 d€J 4.1 Cia SU:v E X, a, {3E C Hai bili loan sau
x" (t) = v (t ) , {3(x) = 0, x' (0) = 0 (4.2)
co nghi~m Xl, X2 tttdng itng H dn nila
IIxiii :::; M2 ' Ilx~ II :::; Ilv II, i = 1,2 (4.3)
Chung minh Phuong trlnh x"(t) = v(t) co nghi~m t6ng quat 1£1
x(t) = Cj +c,t+l' 1" v(T)dnk
x vai bi~u thti'c nhu tIeD 1£1 mQt ph~n tv cua X D~ co khiing dinh
nay ta chi c~n chti'ng minh x lien tl,lC tIeD J Liiy {tn} 1£1day hQi tl,l
v§ t E J, ta danh gia x(tn) - x(t) va ki~m tra x(tn) - x(t) -7 0 khi
n -7 +00 Tli bi~u thti'c cua x(t) ta co
Trang 2tn {s t (s
x(tn) - x(t) = C2(tn- t) + Jo Jo v(T)dTds - Jo Jo v(T)dTds,
Itn (s
x(tn) - x(t) = C2(tn- t) + t Jo v(T)dTds,
[X(tn) - X(t)[ ~ [C2[.ltn ~ t[ + [" l' v(T)dT[ ds,
IxU.)- x(t)1:( hl.lt. - tl + [n Ilvllds,
Ix(tn)- x(t)1 ~ IC21.ltn- tl + IIVII.ltn - tl.
R6 rang khi tn -+ t thi x(tn) -+ x(t).
a) Xet (4.1).
V6i di~u ki~n bien a(x) = 0,f3(x') = 0 ta Urndl1Qc~,c E J sao cho
x(~) = O,x'(c) = 0:
x'(c) = Cz+ l' v(r)dr = O.
Vdi C2 + l'v(T)dT = 0 ta co 1~ (C2+ l' V(T)dT)ds = O.Mil
Cl+C2~ + l' l' v(T)dTds = 0 nen Cl+ l' l' v(T)dTds = o Nghiem
x(t) tren day dl1Qc vi~t l<;1i:
x(t) = c] + c,t + l' l' v(r)drds,
x(t) = (C1 + t l' V(T)dTdS) + C2t+ l' 1'V(T)dTdS,
xli) = c2t+ ll' v(T)dTds.
Lily t = ~ta c6 "(0 = C2+ l' l' v(T)dTds, hay lit C2 = O Suy fa
nghi~rncua (4.1)lit x(t) = it l' v(T)dTds.
x(t) = l' l' v(r)drds Iiinghi~mcluynMt ciia billtOM (4.1).
Ix(t)1= 11' [ v(r)drds .;: l' [ Iv(r)ldrds .;: l' [ IIvlldrds,
Trang 3Ix(t)1 :;;; IIVII;;' l' dTds = IIvll;;' (8 - e)d8,
]
Ix(t)I~IIvll" ( ct)-( c~) 2 2 =llvll c(t-'!jJ) .2 2
Dieu nay clan den Ix(t)1 ~ -llvll, tac la Ilxll ~ -IIvll.2 2
Tit x( t) = it l' v( T) dTds ta liiy d"", ham hai v~: x' (t) ~ it v(T)dT.
guy fa Ix'(t)1 ~ [IV(T)!dT = IIvllU - 0) ~ IIvll
Vf}.yta da chang minh (4.1) co nghi~m cluy nh§,t Xl thoa (4.3)
4.1 Biti toan thil nhiit
Xet bai tmin sau
(4) - ( ", ",)
X - P t,x,x,x,x ,
cy(x) = 0, (3(x') = 0, X"(0) = 0, X"(1) = 0
(4.4) (4.5)
vdi p E Car(J x JR4)va cy,(3 E C.
D~nh ly 4.1 Cia 811LI ~ 0 ~ L2, L3 ~ 0 ~ L4 la cae hling 88,
p(t,x,u,v,Ld ~ 0 ~ p(t,x,u,v,L2),
p(t,x,u,v,L4) ~ 0 ~ p(t,x,u,v,L3) thoa vdi hdu htt t E J va vdi m9i (x, u, v) E [-L/2, L/2] x [-L, L] x
[-L, L], L = max{ -LI, -L3, L2, L4}.
B ai loan (4.4) (4.5) co it nhdt m{jt nghi~m x: (t E J)
Ilxll ~ L/2, IIx'II ~ L,Ilx"ll ~ L, min{LI,L3} ~ x"'(t) ~ max{L2, L4}.
(4.6)
Chung minh.
a) L§,yv E X b§,t ky Thea b6 de 4.1, phuong trlnh x"(t) = v(t) co
Trang 4nghi~m duy nh§,t Xl thoa a(x) = (3(x') = O D~t Fv = Xl thl ta xac
dinh du<;Jctoan tit F : X ~ X.
Cling vdi v E X b§,t ky, theo b6 d@4.1, x"(t) = v(t) co nghi~m duy
nh§,t X2 thoa j3(x) = x'(O) = 0, va ta d~t Hv = X2, di@unay xac dinh
toan tit H : X ~ X.
b) Ta ki@mtra F, H ED.
+ F va H bi ch~n bai theo (4.3) ta co IIFvl1:::; 2"llvll, IIHvl1 :::; 2"llvll.
N§u IIvll :::; L thlllFvll :::; L/2, IIHvll:::; L/2, do do p(F; [0,L]x) :::; L/2
va p(H; [0,L]x) :::;L/2.
+ Ta se chang minh F lien tl)C b~ng each l§,y {vn} C X la day hQi tl)
v@v E X va chi ra Fvn ~ Fv.
Vi (Fvn)"(t) = vn(t), (Fv)"(t) = v(t) nen ta tlm du<;Jchai day bi
ch~n {an}, {bn} trong JRva a, b E JRsaG cho, vdi t E J, n E N
Fvn(t) = an + bnt + 1'1' vn(T)dTds,
va Fv(t) = a + bt + l' l' v(T)dTds Dieu d6 dU<)cviet khac di Ii;
xn(t) = an+bnt+ i' i' vn(T)dTds, va x(t) = a+bt+ i' i' v(T)dTds.
Vdi m, n E N tuy y:
(Fvm - Fvn)(t) = am-an+(bm -bn)t+ l' l' (Vm-vn)(T)dTds.
Ta co am- an = (Fvm - Fvn)(O).
Suy ra lam - ani = I (Fvm - Fvn)(O)1 :::; IIFvm - Fvnll.
1 Theo (4.3), IIFvm- Fvnll = IIF(vm- vn)11:::;-llvm - vnll.
2
{vn} hQi tl) v@v nen Cauchy trong X Tl1 do {an} cling Cauchy.
{bn} la day Cauchy n§u d@y
bm-bn = (Fvm - Fvn)(l) -(am -an) -[1" (Vm-Vn) (T)dTds,
Ibm- bnl ~ I(Fvm - Fvn)(l) I+lam - ani + [ l' Ilvm - vnllds,
Ibm - bnl :::;2"llvm - vnll + lam- ani+ Jo Jo Ilvm- vnllds.
Hai day {bn},{an} la Cauchy nen phlti hQitl)
Trang 5Ta chang minh hai day nay hQi tl) l§,n 111Qtv@b, a.
Gia s11ngl1Qc l?-i, lim bn n ->00 i= b, {bn} se c6 mOt day con {bnk} hQitw
lim bnk = b*, b* i= b.
k ->00
Vi j3(x~J = 0, X~k(t) = bnk+ (t vnk(s)ds, nen khi cho k -+ +00 ta
thu dli(!e {3(y') = 0, y'(t) = b' + l v(s)ds.
Ma (3(x') = 0, x'(t) = b + l' v(s)ds, va (3la ham tang non plll,j c6
y* = x' hay la b*= b, vo ly Do d6 lim bn= b.
n ->+oo
N@ugia S11lim an i= a, se c6 mOt day con hQi tlJ {anJ cua {an}: n ->00
*-i-1m ank = a , a I a.
k ->00
ta tll1l dl1<;!CI>(Z') = 0, z'(t) = a' + bt + l' L'V(T)dT.
Ma a(x) = 0, x(t) = a + bt + l' 1<' V(T)(lT, va a 1a ham tang non phai c6 z* = x, nghla la a* = a, do d6 lim an = a.
n ->+oo
T6m l?-i, xn(t) -+ x(t) v6i moi t E J.
Suy ra Xn -+ X trong X, tac la Fxn -+ Fx trong X.
Ta da chang minh F lien tlJC tren X.
+ H lien tlJC tren X la t110ng tv:.
+ F, H la cac ham lien tlJC va bi ch~n tren X, nen F, H E V.
c) N@uvi@t u = x", v6i a(x) = j3(x') = 0 ta c6 x = Fu V6i x"(O) =
x"(l) = 0 ta dl1Qcu(O) = u(l) = O.
u = x" cho ta x", = u' N@uvi@tx", = u' thanh (x')" = u', do j3(x') = 0 va (x')'(O) = x"(O) = 0, se c6 x' = Hu'.
Nhl1 vi;iy, (4.4)(4.5) dl1Qc dua v@(4.7)(4.8):
u"(t) = p(t, Fu(t), Hu'(t), u(t), u'(t)), (4.7)
Trang 6LiLyf(t,x,u,v,w) = p(t,u,w,x,v) v8i (t,x,u,v,w) E J X IR4.
Ky hiE;juL' = min{L1, L3}, M' = max{L2, L4} thi M' ~ £, con
-£' = max{ -L1, -L3} ~ L hay L' ~ -L Ta kH:;mtra f thoa di§u
kiE;jncua dinh 1y 2.3:
f(t,x,u,Ll,W) ~ 0 ~ f(t,x,u,L2,w), f(t,x,u,L4'W) ~ 0 ~ f(t,x,u,L3,w) v8i t E J, (x,u,w) E (L',M';F,H)]R.
Cho t E J va (x,u,w) E (L',M';F,H)]R, ta co
L' ~ X ~ M', lul ~ p(F, (L', M')x), Iwl ~ p(H, (L', M')x).
Do L' ~ - L, M' ~ L, n@uL' ~ x ~ M' thi IxJ ~ L.
Vi p(F, [0,L]x) ~ L/2, p(H, [0,L]x) ~ L/2 ,n@u lul ~ p(F, (£', M')x)
va Iwl ~ p(H, (L', M')x) thi lul ~ L/2, Iwl ~ L.
Nhu th@,(u,w,x) E [-L/2,L/2] x [-£,L] x [-L,L], va ro rang
f(t, x, u, L1, w) = p(t, u, w, x, L1) ~ 0 ~ p(t, u, w, x, L2) = f(t, x, u, £2, w), f(t, x, u, L4, w) = p(t, u, w, x, £4) ~ 0 ~ p(t, u, w, x, L3) = f(t, x, u, £3, w).
Ta da ki@mtra di§u kiE;jncho dinh 1y2.3 Bai tmin (4.7) co nghiE;jm
u sao cho, v8i t E J,
Ilull ~ L, min{L1, L3} ~ u'(t) ~ max{L2, L4}.
Khi u 1a nghiE;jmcua (4.7)(4.8), theo b6 d§ 4.1, t6n t~i duy nhiLt
x E AC3(J) thoa a(x) = 0, !J(x') = 0 va x" = u.
x nay chfnh 1a nghiE;jmcua bai tmin (4.4)(4.5) thoa (4.9).
Tren day ta da sU'd\lng dinh 1y 2.3 cho bai tmin thti' nhiLt Bay gid
ta sU'd\lng dinh 1y 3.3 datrinh bay trong chuang 3 L1, L2, L3, L4 la cac ham lien t\lC sao cho L3 < L1 < 0 < L2 < L4 V8i t E J, x, u, v, wEIR d$,t f(t,x,u,v,w) = p(t,u,w,x,v).
Bai toan (4.7)(4.8)
u"(t) = p(t, Fu(t), Hu'(t), u(t), u'(t))
u(O)= 0,u(l) = 0
Trang 7trd thanh
u"(t) = j(t,x(t), Fu(t), x'(t), Hx'(t))
u(O) = 0, u(l) = O.
Thea dinh 1y 3.3, n~u di@u ki~n sau thai man thl (4.7)(4.8) co nghi~m:
p(t, x, u, W,L1(t)) ~ 0 ~ p(t, x, u, w, L2(t)), p(t, x, u, W,L4(t)) ~ 0 ~ p(t, x, u, W,L3(t)) y6i h§,u h~t t E J, y6i mQi x, u, w E ffi.ma
IxJ ~ p(F, ((L3, L4)),
lul ~ p(H, /L(L3, L4)),
Iwl ~ max{IIL311,IIL411}= L.
Ta co nh~n xet sau
+ N~u y E ((L3, L4) thl 0 ~ Ilyll ~ max{IIL311,IIL411}.Luc do IIFyll ~ ~lIyll~ ~L;
+ N~u z E /L(L3,L4) thl 0 ~ Ilzll~ L Luc do IIHzll ~ IIzll ~ L.
Nghi~m cua phudng trlnh u"(t) = j(t, u(t), Fu(t), u'(t), Hu'(t)), u(O) = 0, u(l) = 0 1uc fLyse thai lu(t)1 ~ L ya L3(t) ~ u'(t) ~ L4(t) y6i mQit E J.
Ta co dinh 1y 4.2.
D~nh ly 4.2 Cia SV:L3 < L1 < 0 < L2 < L4 la cae ham lien t7,lC,
L1,L4 tang, L2, L3 giam tren J thoa
p(t, x, u, v, L1(t)) ~ 0 ~ p(t, x, u, v, L2(t)), p(t, x, u, V,L4(t)) ~ 0 ~ p(t, x, u, v, L3(t))
vdi hh t E J, vdi m9i (x, u, v) E [-L/2, L/2] x [-L, L] x [-L, L],
L = max{IIL311,IIL411}.
The thi (4.4)(4.5) eo nghi~m x,
Ilxll ~ L/2, IIx'll ~ L, Ilx"lI ~ L, L3(t) ~ Xlll(t) ~ L4(t), t E 1. (4.9)
Trang 8Bai toan thu hai
Tllong tlj nhll tren ta xet bai toan sail
III
(t ' If)
a(x) = 0, x'(O)= 0, x' (1) = 0 (4.11)
trong do q E Car(J x ]R3),a E C.
N~u thay x' bdi u, thi u' = x" Vdi a(x) = 0, x'(O) = 0, theo b6
d~ 4.1 ta vi~t x = Hu'; va tli di~u ki~n bien x'(O) = x'(l) = 0 ta co
u(O) = u(l) = o.
Bai toan (4.10)(4.11) trd thanh
u"(t) = q(t, Hu'(t), u(t), u'(t)), (4.12)
u(O) = u(l) = O.
DM f(t,x,v,w) = q(t,w,x,v), (4.12)(4.13) trd thanh
(4.13)
u"(t) = f(t, u(t), u'(t), Hu'(t)), (4.14)
D!nh 1:5'4.3 Cia SU:L1 ~ 0 ~ L2, L3 ~ 0 ~ L4 la cae hling 58)
q(t,x,u,Ld ~ 0 ~ q(t,x,u,L2), q(t, x, u, L4) ~ 0 ~ q(t, x, u, L3) thoa man v(;i hau htt t E J va v(;i moi (x, u) E [-L, L] x [-L, L], L =
max{ -L1, -L3, L2, L4} Bai loan (4.10)(4.11) co nghi~m x sao cho
IIxii ~ L, IIx'll ~ L, min{L1, L3} ~ x"(t) ~ max{L2, L4}, t E J.
Chung minh. Ta Slt d\mg dinh ly 2.3 ChI c§,n ki~m tra di~u sail
xay ra vdi t E J, L' ~ u ~ M' va Ixl ~ p(H, (L', M')), L' =
min{L1, L3}, M' = max{L2, L4}:
f(t,u,L1,x) ~ 0 ~ f(t,u,L2'X),
Trang 9f(t,u,L4'X) ~ 0 ~ f(t,u,L3,x).
Do L' = min{L1, L3}, M' = max{L2, L4} va L = max{ -L1, -L2, L3, L4} nen -L' = max{ -L1, -L2} ~ L, M' ~ L.
N@uL' ~ u ~ M' thi ta co -L ~ u ~ L.
Bai p(H,(L',M')x) = sup{IIHxll,xE X,L' ~ x ~ M'}, n@uIxl ~ p(H, (L', M')x) thi -L ~ x ~ L.
Tom I~i, n@uL' ~ u ~ M', Ix! ~ p(H, (L', M')) thi
(x, u) E [-L, L] x [-L, L].
L§.yt E J, L' ~ u ~ M', Ixl ~ p(H, (L', M')) Ta co
f(t,u,L1,x) = q(t,x,u,L1) ~ 0 ~ q(t,x,u,L2) = f(t,u,L2'X),
f(t,u,L3,x) = q(t,x,u,L3) ~ 0 ~ q(t,x,u,L4) = f(t,u,L4'X).
Cac di@uki~n trong dinh Iy 2.3 dll<;1C dam baa Bai toan (4.14)(4.15)
co nghi~m u thoa L' ~ u ~ M' va L' ~ u' ~ M' Tit L' ~ u' ~ M'
ta dll<;1CL' ~ x"(t) ~ M' Tit L' ~ u ~ M' ta co -L ~ x'(t) ~ L hay
la Ilx'll ~ L Danh gia -L ~ x'(t) ~ L k@th<;1p vdi a(x) = 0 clan d@n -L ~ x(t) ~ L, tlic la Ilxll ~ L Dinh Iy 4.3 chling minh xong. D
Khi L1, L2, L3, L4 la cac ham lien t\lC tren J ta co dinh Iy 4.4.
D!nh ly 4.4 Cia sa L1, L2, L3, L4 la cac ham lien t7J,C,L1, L4 tang,
L2, L3 giam tren J sao rho L3 < L1 < 0 < L2 < L4,
q(t,x,u,L1(t)) ~ 0 ~ q(t,x,u,L2(t)), q(t, x, u, L4(t)) ~ 0 ~ q(t, x, U,L3(t))
thda man vdi hau h~t t E J va vdi m9i (x, u) E [-L, L] x [-L, L], L =
max{IIL311,IIL411}.Bai toan (4.10)(4.11) co nghi~m x sao rho IIxll ~ L,
Ilx'll ~ L, L3(t) ~ x"(t) ~ L4(t),t E J.
Chung minh Ta ki~m tra ding, vdi h§.u h@t t E J, lul ~ L va Ixl ~ p(H, Jl(L3,L4)) thi co di@usail day,
f(t, u, L1(t), x) ~ 0 ~ f(t, u, L2(t), x), f(t, u, L4(t),x) ~ 0 ~ f(t, u, L3(t), x).
Trang 10R6 rang, n@u lul ~ L va Ixl ~ p(H, /-L(L3,L4)), se co
(x, u) E [-L, L] x [-L, L].
Th@thl,
j(t,u,L1(t),x) = q(t,x,u,L1(t)) ~ 0 ~ q(t,x,u,L2(t)) = j(t,u,L2(t),x), j(t, u, L3(t), x) = q(t, x, U,L3(t)) ~ 0 ~ q(t, x, U,L4(t)) = j(t, u, L4(t), x).
Cac di§u ki~n trong dinh 1y3.3 du'Qcdam baa Bai toan (4.14)(4.15)
co nghi~m u th6a -IIL311~ u ~ IIL411 va L3(t) ~ u'(t) ~ L4(t), t E 1 (4.10)(4.11) co nghi~m x = Hu'.
Bdi x' = u nen khi -IIL311~ u(t) ~ IIL411, t E J thl
-IIL311~ x'(t) ~ IIL411,t E J.
Tl1L3(t) ~ u'(t) ~ L4(t), t E J ta co Ilu'll~ L va du'QCIIHu'll~ L
hay 1a Ilxll ~ L.
Cling tl1 L3(t) ~ u'(t) ~ L4(t), t E J suy ra
L3(t) ~ x"(t) ~ L4(t), t E J.