-Bỏ dấu ngoặc -Nhóm các hạng tử đồng dạng.. - Cộng, trừ các đơn thức đồng dạng... Lưu ý: Khi bỏ dấu ngoặc có dấu + đằng trước thì dấu của các hạng tử trong ngoặc vẫn giữ nguyên.. Lưu ý:
Trang 1KIỂM TRA BÀI CŨ:
Câu I: Phá ngoặc rồi thu gọn đa thức
5x y 5x 3 xyz 4x y 5x
2
5x y 5x 3 xyz 4x y 5x
2
5x y 4x y 5x 5x xyz 3
2
x y 10x xyz
2
5x y 5x 3 xyz 4x y 5x
2
Giải: Ta có
Trang 2Ví dụ 1: cho đa thức
5x y 5x 3 xyz 4x y 5x
2
Tiết 57 : § 6 CỘNG, TRỪ ĐA THỨC
M 5x y 5x 3 và N xyz 4x y 5x
2
Tính M +N = ?
1.Cộng hai đa thức:
Trang 3( 2 ) 2 1
M N 5x y 5x 3 xyz 4x y 5x
2
5x y 5x 3 xyz 4x y 5x
2
5x y 4x y 5x 5x xyz 3
2
x y 10x xyz
2
Tiết 57 : § 6 CỘNG, TRỪ ĐA THỨC
Ví dụ 1: Ta có
M N x y 10x xyz
2
M và N
Vậy để cộng hai đa thức ta làm như thế nào?
+Đặt mỗi đa thức trong một dấu ngoặc, viết dấu cộng vào giữa hai đa thức -Bỏ dấu ngoặc
-Nhóm các hạng tử đồng dạng
- Cộng, trừ các đơn thức đồng dạng
M 5x y 5x 3 ; N xyz 4x y 5x
2
Dựa trên cơ sở khoa học nào, ta có thể viết
được
1.Cộng hai đa thức:
Trang 4Tiết 57: §6 CỘNG, TRỪ ĐA THỨC
1.Cộng hai đa thức:
*Ví dụ 1:
?1 Viết hai đa thức rồi tính tổng của chúng.
2.Trừ hai đa thức:
Ta có: P = 6x2y3z - 5xy2 + 3xz; Q = -6x2y3z + 3xy2 -7
Trang 5Tiết 57: §6 CỘNG, TRỪ ĐA THỨC
1.Cộng hai đa thức:
1.Trừ hai đa thức:
*Ví dụ 2:
cho đa thức P = 5x2y – 4xy2 +5x - 3;
Q = xyz - 4x2y + xy2 + 5x - 1 Tính P - Q= ?
*Ví dụ 2:
Ta có: P = 5x2y - 4xy2 +5x - 3;
Q = xyz -4xy2 + xy2 + 5x - 1
Vậy P-Q = 9x2y - 5xy2 - 2 - xyz
= (5x2y + 4x2y)+ (-4xy2 - xy2) + (5x- 5x) + (-3+1) -xyz
= 9x2y - 5xy2 - 2 - xyz
= 5x2y - 4xy2 +5x -3 - xyz + 4x2y - xy2 - 5x +1
Hiệu của hai đa thức P và Q
Trang 6Tiết 57: §6 CỘNG, TRỪ ĐA THỨC
1.Cộng hai đa thức:
1.Trừ hai đa thức:
*Ví dụ 2:
Ta có: P = 5x2y - 4xy2 +5x - 3;
Q = xyz -4xy2 + xy2 + 5x - 1
Vậy P-Q = 9x2y - 5xy2 - 2 - xyz
= (5x2y + 4x2y)+ (-4xy2 - xy2) + (5x- 5x) + (-3+1) -xyz
= 9x2y - 5xy2 - 2 - xyz
= 5x2y - 4xy2 +5x -3 - xyz + 4x2y - xy2 - 5x +1
Vậy để trừ hai đa thức em làm như
thế nào?
Trang 7B 4 : Cộng, trừ các đơn thức đồng
dạng
Lưu ý: Khi bỏ dấu ngoặc có
dấu + đằng trước thì dấu của
các hạng tử trong ngoặc vẫn
giữ nguyên
Lưu ý: Khi bỏ dấu ngoặc có dấu
-đằng trước ta phải đổi dấu tất cả các hạng tử trong dấu ngoặc
B 1: Đặt mỗi đa thức trong một dấu
ngoặc, viết dấu cộng vào giữa hai
đa thức
thức
dạng
Cách làm trên vẫn đúng với tổng hiệu của nhiều đa thức
Trang 8Tiết 57: §6 CỘNG, TRỪ ĐA THỨC
1.Cộng hai đa thức:
1.Trừ hai đa thức:
?2 Viết hai đa thức rồi tìm hiệu của chúng
Cho đa thức A = 6x2 +9xy -y2; B = 5x2-2xy Tính A-B = ?
Trang 9Bài 29 (Sgk) Tính:
a) (x + y) + (x – y)
Ta có: (x + y) + (x - y) = x + y + x - y = (x+x) + (y-y) = 2x + 0 = 2x Vậy (x + y) + (x - y) = 2x
Ta có: (x + y) - (x - y) = x + y - x + y = (x-x) + (y+y) = 0 + 2y = 2y Vậy (x + y) - (x - y) = 2y
b) (x + y) – (x – y)
Trang 10Bài 31 (Sgk) Cho hai đa thức:
M = 3xyz - 3x2 + 5xy - 1; N = 5x2 + xyz - 5xy + 3 - y
Tính M - N ; N - M
N – M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 8x2 - 2xyz - 10xy + 4 - y
Vậy M-N=2xyz - 8x2 +10xy - 4+y; N–M = 8x2 - 2xyz - 10xy + 4 - y
Giải:
Trang 11Bài 32 (SGK): Tìm đa thức P, biết:
a) P + (x2 - 2y2) = x2 - y2 + 3y2 - 1
Giải:
Trang 12-Xem lại các bài tập đã làm.
-BTVN: 30; 31(M+ N); 32b, 33 (Sgk); 29; 30 (Sbt)
HƯỚNG DẪN VỀ NHÀ: