1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Some problems of non-linear oscillations in systems with large static deflection of elastic elements

19 215 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 5,79 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

In this work two following problems have been examined: 1 The non-linear oscillations of electro-mechanical systems with limited power supply and large static deflection of the elastic e

Trang 1

H A N O I 1 9 9 3

Trang 2

P ro c e e d in g s o f th e N C S T o f Vietnam, Vol 5, No 2 (1993) (3 -2 0 )

M e c h a n i c s

S O M E P R O B L E M S O F N O N - L I N E A R O S C I L L A T I O N S

I N S Y S T E M S W I T H L A R G E S T A T I C D E F L E C T I O N

O F E L A S T I C E L E M E N T S

Ng u y e n Va n Dao

Institute of Appl i ed Mechanics, Hochiminh City

S u m m a r y In this work two following problems have been examined:

1) The non-linear oscillations of electro-mechanical systems with limited power supply and large static deflection of the elastic elements.

2) The interaction between the self-excited and parametric oscillations and also between the self-excited and forced ones in the non-linear systems with large static deflection of the elastic elements when the mechanisms exciting these oscillations coexist.

In both problems there is a common feature characterized by the fact that the nonlin- eaxity of the system under consideration depends on the parameters of elastic elements and theừ static deflection and by the appearance of the non-linear terms with different degrees

of smallness in the equations of motion Stationary oscillations and theừ stability have been paid special attention.

N o n - l i n e a r o s c illa t io n s in s y s t e m s w it h la r g e s t a t i c d e fle c t io n o f e la s t ic e le m e n ts

h a v e b e e n e x a m in e d in [ l ] T h e s p e c ific ity o f th e s e s y s t e m s is: T h e ir h a r d n e s s e s s e n tia lly

d e p e n d s o n b o t h t h e p a r a m e te r s o f th e e la s t ic e le m e n t a n d it s s t a t i c d e fle c tio n T h is

f e a tu r e le a d s t o t h e c h a n g e o f t h e a m p lit u d e c u r v e a n d t h e s t a b ilit y o n it

In t h is w o r k s o m e r e la te d p r o b le m s w ill b e in v e s tig a te d : T h e s y s t e m w it h lim ite d

p o w e r s u p p ly a n d t h e in t e r a c t io n o f n o n - lin e a r o s c illa tio n s

I - N O N L IN E A R OSCILLATIONS OF THE SYSTEM W ITH LARGE

STATIC DEFLECTION OF THE ELASTIC ELEMENTS

A ND LIMITED POW ER SUPPLY

In t h i s p a r t t h e n o n - lin e a r o s c illa t io n s o f a m a c h in e w it h r o t a t in g u n b a la n c e an d

la r g e s t a t i c d e f le c t io n o f t h e n o n - lin e a r sp r in g a n d lim it e d p o w e r s u p p ly are c o n s id e r e d

T h e e q u a t io n s o f m o t i o n o f t h e s y s t e m u n d e r c o n s id e r a t io n are d iffe r e n t w it h th o s e o f

c la s s ic a l p r o b le m [2] b y t h e a p p e a r a n c e o f th e n o n - lin e a r te r m s w it h d iffe r e n t d e g r e e s o f

Trang 3

s m a lln e s s T h is fe a tu r e le a d s to th e d e p e n d e n c e o f th e h a r d n e ss o f th e s y s t e m n o t o n ly on

th e p a r a m e t e r s o f th e e la s tic e le m e n t b u t a lso on it s s t a t i c d e fle c tio n

T h e r e s u lt s o b ta in e d are d iffe r e n t in b o th q u a lity a n d q u a n tity w it h th o s e o b ta in e d by

K o n o n e n k o V o [2].

1 E q u a t i o n s o f m o t i o n

F ig u r e 1 illu s tr a te s a m a ch in e w ith a p air o f c o u n te r r o ta tin g r o to r s o f e q u a l u n b a la n c e (s o t h a t h o r iz o n ta l c o m p o n e n ts o f th e c e n tr ifu g a l fo rce v e c to r s c a n c e l) , is o la te d fro m th e flo o r b y n o n - lin e a r sp r in g s an d d a s h p o ts w ith d a m p in g c o e ffic ie n t h 0.

1 V 0 SL

X

Fig 1

T h e s p r in g s s u p p o r tin g th e m a ss are a ssu m e d to be n e g lig ib le in m a s s w ith a n o n ­ lin e a r c h a r a c t e r is t ic fu n c tio n :

/ ( u ) = cou + 0 ou3; (L l-1 )

w h e r e cn is a p o s it iv e c o n s t a n t , /3 0 is e ith e r p o s it iv e (h a r d c h a r a c t e r is t ic ) or n e g a t iv e (s o ft

c h a r a c t e r is t ic ) T h e d e fo r m a tio n o f th e sp r in g in th e s t a t i c e q u ilib r iu m p o s it io n is A , a n d

t h e s p r in g fo r c e c(, A ■+■ i (lA 3 is eq u a l to th e g r a v it a t io n a l fo rce m 0g a c tin g o n th e m a ss:

C0 A + £ 0 A 3 = m 0 g,

w h e r e m„ = m l + m is d e fin e d as th e su m o f th e m a in m a s s m i a n d th e r o t a t in g u n b a la n c e

m a s s e s m , t h a t is th e t o t a l m a s s s u p p o r te d by th e s p r in g s T h e d is p la c e m e n t X is m e a su r e d

fr o m t h e s t a t i c e q u ilib r iu m p o s itio n w ith I c h o sen t o b e p o s it iv e in th e u p w a rd d ir e c tio n

A ll q u a n t it ie s - fo r c e , v e lo c ity , an d a c c e le r a tio n - are a lso p o s itiv e in th e u p w a rd d ir e c tio n

T h e s y s t e m u n d e r c o n s id e r a tio n h a s tw o d e g r e e s o f fr e e d o m a n d th e g e n e r a liz e d

c o o r d in a t e s X a n d i p c o m p le t e ly d efin e it s p o s itio n

T h e k in e t ic e n e r g y o f th e s y s t e m u n d er c o n s id e r a tio n is

T = - m X 4 - — V

2

m )

I m = X - h r COS <p, Z m = r s i n V?.

H e n c e

Trang 4

SOME PROBLEMS OF NON-LINEAR OSCILLATIONS IN SYSTEMS WITH LARGE STATIC 5

T = - m 0 i 2 — m r x i psin <p H— /<p2, / = m r2 (1.1.3)

For t h e p o t e n t ia l en e r g y , th e r efer en ce can b e ch o sen a t th e le v el o f th e s t a t i c e q u i­ lib r iu m p o s itio n :

Ư = — (A — x ) 2 + — (A — x ) 4 *f rnt)gx 4- m g rCOS (p. (1-1-4)

T h e L a s g r a n g e ’s e q u a t io n s g iv e

I<p = m r x sin (p + m g r sin <pt

m0 X + c0 X + /?013 - f 3/30 A 2x — 3/Ju A x 2 = m r^ sin + mri p 2 COS V?.

T a kin g into a c c o u n t th e driving m o m en t L(<p) and the frictions H(<p), k 0x we have

th e fo llo w in g e q u a t io n s o f m o tio n :

I ỷ = L(yi>) — H[<p) -+- m r x s i n <p + m^r sin V?,

T71()X + c0i - f / i 0i + /?ni 3 4- 3/90 A 2x — 3)ổn A x 2 = mr^> sin Ip -f m r< p2 COS (p.

S u p p o s in g t h a t A is rather large and X is enough sm a ll, so t h a t £tlx 3 is a sm all

q u a n tity o f second d egree (s2), w h ile 0 it A x 2 is o f first degree (5), w h ere £ is a sm a ll p o sitiv e

p a r a m e te r O b v io u s ly , in th is c a se # , A 2X is fin ite

It is a s s u m e d a ls o t h a t — 1, ^ 1 T h e fr ic tio n fo r c e s, th e fo r c e s YTiTtf? COS <p,

m r < p s i n y ? a n d t h e m o m e n t s m r xs i n <p f m g r s i m p a r e s u p p o s e d t o b e s m a l l q u a n t i e s o f e 2

T h u s , w e h a v e t h e fo llo w in g e q u a tio n s o f m o tio n :

w h e r e

<p = e 2 [ A / 1 ( ý > ) + <7 ( 1 + 9) s i n s ơ ] ,

ĩ + w2 ĩ = í7I 2 + £2 [ p ỷ sin ip + p<p 2 COS ip - h i — Ị3x2)

f p = — - , e h = t c7 = -I S — c p = zf" >

^ , e 2Mi(yỉ>) = ị [£((£>) - # (¥ ? )], e 2? =

mr

T

(1.1.8)

T h e e q u a t io n s (1 1 7 ) are d iffe r e n t w it h th o s e in K o n o n e n k o V o w o rk [2] b y th e

a p p e a r a n c e o f th e q u a d r a tic te r m 5 7X2 a n d b y th e d e g r e e s o f s m a lln e s s o f t h e te r m s T h e s e

e q u a t io n s c h a r a c te r is e t h e s y s t e m s w ith w ea k e x c it a t io n an d la rg e s t a t i c d e f le c tio n

2 S o lu t io n

W e lim it o u r s e lv e s by c o n s id e r in g th e m o t io n in t h e r e s o n a n c e r e g io n , w h e T e th e

f r e q u e n c y u o f t h e free o s c illa t io n is n ear t o th e fr e q u e n c y n = <p o f t h e fo r c e d o s c illa t io n s

W e s h a ll fin d t h e s o lu t io n o f e q u a tio n s (1 1 7 ) in th e se r ie s [3]

X = a cos(<p + 0) + e ui (a, \ịỉ, <p) + £2U2(a , t/>, <p) + £3

Trang 5

w h e r e u t ( a , d o n o t c o n t a i n t h e f i r s t h a r m o n i c s COs \ p i s i n t/>, \ị) = <p + Ỡ a n d a r e p e r i o d i c

f u n c t i o n s o f a n d (p w i t h p e r i o d 27T, a n d a , 6 a r e f u n c t i o n s s a t i s f y i n g t h e e q u a t i o n s

à = £w4i(a, Ớ) + e 2w42 (a ,0 ) + .

# = UJ — n -f £#1 (a, 9) 4" e 2B 2 (a, Ỡ) 4"

dip

(1.2.2)

n =

dt

T h e f i r s t e q u a t i o n o f ( 1 1 7 ) i s t h e n

á n

= e 2 [ M i ( n ) + q ( x + g) sin <p] (1.2.3)

T o d e t e r m i n e t h e u n k n o w n f u n c t i o n s Ay, B x, u t w e d i f f e r e n t i a t e t h e e x p r e s s i o n ( 1 2 1 )

a n d s u b s t i t u t e i t i n t o ( 1 1 7 ) W e h a v e :

X = —CLUJ s i nr p + e< — a B 1 sin + Ảỵ COS 0 H- w — + n —— >-h

+ £ I - a i?2 sin t/> -f i42 cos + i4i ~ - L + n +

X = — auj COS^ 4- (cư — n ) — - — 2 a a > i? i] cos \ịỉ — f(u» — n ) a + 2cư j4i

^ 2 u i 2 ^ U1 1 + 2 w n - ^ - + w ^ - } +

sin

+ n 20<9^>2 + 2w n 5 V'3 ^d\ịỉd<p d\ị)2 i

4- é 2 Ị ^(cj — n ) — ^ — 2 a u B 2 COS xp — Ị(u> — 0 ) a-— 2 + 2(iM2 sin \ịỉ+

+ { A x ^ Ệ ± + 5 1 -Q 0 - - a S ỉ ) C0S - (2A1 jBi + a A l-g-^- + a 5 l ^ i') *i n V»+

+ ( w - n ) cMi <3u _ L Q2 — ^ r>2^2u2 2 + 2cjQ — — + u r — — d 2U, 2 ^

2u-<90 da d<p 2 diọdrịì d\Ị ) 2 + e (1.2.4)

S u b s t i t u t i n g t h e e x p r e s s i o n s ( 1 2 4 ) i n t o t h e e q u a t i o n (1*1.7) a n d c o m p a r i n g t h e c o ­

e f f i c i e n t s o f e a n d e 2 w e o b t a i n :

+

/ d d \2 2

\ n d i + ” i k ) u ‘ + w u

-•+* Ị(cư — n ) ~~Ệ q ’ ~~ 2 a u B i j COS rp — Ị(cư — n j a - ^ 1- - f 2cư A i s in xp = 7a2 COS2 t/>,

/ a a \ 2 ,

( n a 5 + “ a v ; ) “ ’ + " “ >+

+ — n ) — 2a w B 2| cos t/> — (w — sin ip —

+ 2 7 0Uj COS v> — /3a3 c o s31/1 + sin Ip + p f i2 COS ip,

(1.2.5)

(1.2.6)

Trang 6

w h e r e R( 0, Bi ) = R ( A h 0) = 0.

C o m p a r in g t h e coefficients o f the harm onics in (1.2.5) we have

(w - “ 2au ) B 1 - °>

(u; — n ) a — ^ 4- 2 a ;A1 = 0,

SOME PROBLEMS OF NON-LINEAR OSCILLATIONS IN SYSTEMS WITH LARGE STATIC

/ _ ổ Ổ \ 2 2 2 _ 2 /.

( n - — + U1 U1 = cos V*

<9yp dip

S o l v i n g th e s e e q u a tio n s yield s

X i = 0 , B i = 0, U i = ^ 7 ( 1 - j c o s 2 V > ) ( 1 2 7 )

C o m p a r in g th e coefficients o f th e first harm on ics sinự>, cosV> in th e eq u a tio n (1.2.6) Wfc have

(w - n ) - 2 o w £ 2 = g 2 - f - - + p H 2 COS Ớ,

(w - n ) a ^ “ + 2a>i42 = —hauj — p H 2 s i n Ỡ.

0 6

F r o m th e s e e q u a t io n s o n e o b ta in s :

ha pCi 2

A 2 = —— -—— sin 6 )

2 u + n

B 2 = — [ Ẹ ~~ n ) a “ 7 - * r ~ c o s Ớ.

4w \ 2 3 CƯ / (w + n)fl

T h e e q u a t io n for d e t e r m in a t io n u3 is

r ~ k +UJ- k ) u ’ + w u’ = - ( ò + ĩ ) a c o s H

-( 1 2 8 )

H ence

T h u s , in t h e re so n a n ce zon e n « u; we have the follow in g e q u a tio n s in th e second

a p p r o x im a t i o n

W'here n , a and 0 s a tis fy t h e e q u a tio n s

d ii e2 [ w 1 2 •

= - — 77[U)tia+ DM sin £7

2u>0v

— = “ We - w - -= - COS

dy9 n V 2a»a « i ) ,

Trang 7

w here

w' = a, + ỉ r a2’ “ = 4 ^ " S £ - (L2-12)

T h e s ta tio n a r y so lu tio n o f th e equations (1.2.11) is d eterm in ed from th e relations

A /i(n ) + -<7tc>2a s in 0 = 0,

_ 2 P ^ 2

w e — n - e —— COS 6 = 0

2 u a

E lim in a tin g th e p hase 6 from the last two eq u a tio ns o f (1.2.13) we o b ta in

w here

W (a2, n ) = u 2a2 \eAh2 -f- 4(u;e - n ) 2] - e Ap 2n 4 (1.2.IS)

In the re so n an ce zone n « U/, th e equation (1.2.14) gives a p p r o x im a tely

n 2 = u>2 + e 2 cxa 2 ± e 2 y j -h 2 (jj 2 (1.2.16)

From t h is re la tio n it follows t h a t the n o n -lin ea r oscilla tio n has:

- a h a rd c h a r a c te r is tic ( F ig 2 a ) if Q > 0 or if

- a s o f t c h a r a c te r is tic ( F ig 2 b ) if

- a lin e a r c h a r a c te r is t ic ( F ig 2c) if

E lim in a t in g 6 fr o m th e fir st tw o e q u a tio n s o f (1 2 1 3 ) w e h a v e

L (n ) - 5 (H ) = 0, (1.2.20)

w h ere

T h e e q u a tio n (1.2.14) is s im ila r to th a t in the s y s t e m w i t h ideal p o w er s u p p ly [1] T h e

d i f f e r e n c e is t h a t n s h o u l d b e s a t i s f i e d t h e r e l a t i o n (1 2 2 0 ) w h i c h c a n b e s o l v e d g r a p h i c a l l y

Trang 8

S O M E P R O B L E M S OF N O N - L I N E A R OSCILLATION S IN SY S T E M S W IT H L A R G E STA TIC

as s h o w n in Fig.

Fig 3

3 S t a b ilit y o f s t a t io n a r y o s c illa tio n s

E q u a t i o n s (1.2.13) can give s o m e s ta tio n a r y values n = O 0 , CL = a0, 6= 0 o To stu d y

th e s t a b i li t y o f th e s e v a lu e s w e in tro d u c e a p ertu r b a tio n o f n , a and 0:

ỐH = Q — n 0) ổ a = a — a of Ỏ6 = 6 — 0 Q.

Trang 9

We d e n o te the right-hand sides of th e eq u a tio n s (1.2.11) by $ n (n, a, 0), $12(Ấ, a, 6 ) J a, 0) resp ectiv ely B elo w , the derivatives will be calcu lated at th e sta tio n a ry values o f n , a and

6 w h ic h s a tis fy the relations (1.2.13) We have the following variational eq u atio n s:

^ - = bl l 6ĩì + bl l 6a + bl i Se>

^ = fc„5n + f c „ 5 a + 6 , 3 * 0 , (1.3.1)

dip

— - = b ^ ỏ ĩ ì + b ^ ỏ a + ay?

w h ere

- d - ề r - w - - £ ( i ( n ) - f f ( n ) ]

3 < & n / i „ w 3 < 3 $ 1 1 m n u ; 3 2

6 „ = - £ ( * « - n ) a , i 4l = £ ± i i = J j ( n - 2 w e) ,

<90 2m on

-^ 1 3 1 a / \ o

a r ' t M 1- " - 1 - "

T h e ch a ra c ter istic e q u a tio n o f th e s y s t e m (1.3.1) is

A3 + Dị X2 -f Đ2^ Dz == 0»

w h ere

Di = - ( 6 n 4- 6ai + 6SJ ,

^ 2 =: ^11^33 ^73^33 ““ ^33^33 ^13^31 ““ ^13^31»

•^3 = ^11^33^33 ■+* ^13^31^53 + ^13^23^31 ” ^13^31^33*

T h e R o u t h - H u r w i t z ’s criteriu m o f stability is

D i > 0, D3 > 0 D 1 D 2^ 3 ^ 0 (1.3.3)

We have

A s u sually, it is s u p p o s e d t h a t -^ -L (n ) is n eg a tiv e and — i / ( n ) is p o s it iv e , so t h a t TV is

n e g a tiv e H en ce, D i is a lw a y s p o sitiv e.

T h e s e c o n d s ta b ilit y c o n d it io n D 3 > 0 as shown by K o n o n e n k o [2] is th e m o s t im p o r­

t a n t on e T h i s c o n d it io n is eq u iv a len t to th e inequality

( 6 , A , - M M) ^ j * ĩ i ( n M ) < 0 (1.3.5)

Trang 10

SOME PROBLEMS OF NON-LINEAR OSCILLATIONS IN SYSTEMS WITH LARGE STATIC 11

w h e r e (ft, a ( n ) , 0 ( n ) ) an d a ( n ) , 6 {n ) are fo u n d fr o m th e la s t tw o e q u a t io n s o f (1.2.13); n a m e ly

* h = £ f [ m - s (fi)}

It is easy to verify t h a t

2 d W

^77 "" ^33^33 ~ ơ £ fl2 ’

w here w is o f th e form (1.2.15) and Ơ2 is a p o s itiv e c o n s ta n t N ow, th e s ta b ilit y c o n d itio n (1 3 5 ) can be r e p r e s e n te d in th e fo rm

i [ i ( n ) - S(n)] < 0 (1.3.6)

d W

It is n o te d th a t — - > 0 is th e sta b ility c o n d ition of sta tio n a r y o scilla tio n w h e n n is a

d a2

given c o n s ta n t is p o s it iv e on the h ea v y branches o f the resonan t curve T h e sign of

d a 2

t h e d eriv a tiv e

G = J y [ L ( n - s ( n ) j (1.3.7)

can b e o b ta in e d by co n sid e rin g th e relative p o sitio n s o f th e graphs L {n ) and 5 ( 0 )

For th e ca se o f th e s y s t e m w ith a hard ch aracteristic (F ig 3) it is clear t h a t G is

d W

n e g a tiv e a t p o in ts R ị , R 2 and R 3i so th a t the p o in ts R ị and i?3, w h ere -— r is p o s itiv e ,

da

co rresp o n d to th e s ta b ility o f s ta tio n a ry o scillations T h e p oin t R 2 co r r e s p o n d s to the

in s t a b ility of s ta tio n a r y o scilla tio n s, w here — z is n egative.

pa*

In c o m p a r is o n w ith a s y s t e m w ith an ideal energy source [l], th e u n s t a b le branch of

th e re so n a n ce cu rv e rem a in s the sam e B u t th e ju m p p h e n o m en o n o cc u r s in a different

m an er A s n is increa sed th e a m p litu d e of oscillation will follow th e solid arrows and the

j u m p in t h e a m p lit u d e w ill ta k e p la c e fr o m p t o Q. W ith a d e c r e a se in fr e q u e n c y n th e

a m p litu d e will fo llo w th e d a shed arrows and th e ju m p w ill be from T t o u T h e p o in ts

o f c o lla p s e p a n d T are t h e p o in t s o f c o n ta c t o f th e c h a r a c te r is tic L (n ) a n d t h e f u n c t io n s

Sin)-For th e ca se o f th e s y s t e m having a soft ch a ra cteristic (Fig 4 ), th e p art o f th e reso­

n a n c e cu rv e in d ic a te d by th e dashed (h ea v y ) line co r resp o n d s t o the in s ta b ility (s ta b ility )

o f s t a t io n a r y o s c illa t io n s , p r o v id e d th e fr e q u e n c y n is a g iv e n c o n s t a n t O n t h is p a r t

~ 2 < ( ^ 2 > ° j - SiZn ° f t ^ie d e r iv a tiv e G (1 3 7 ) d e p e n d s o n t h e s lo p e o f th e

ch a ra c ter is tic , i e on th e q u a n tity — L (n ) It is necessa ry t o d istin g u ish tw o cases:

afi

1) w h e n t h e c h a r a c t e r is t ic is s t e e p , i e -jprL(Cl) h a s a la r g e a b s o lu t e v a lu e ( F i g 4 )

ai l

2) w h e n t h e c h a r a c t e r is t ic is g e n tly s lo p in g , i.e h a s a s m a ll a b s o lu t e v a lu e

(F ig 5).

In t h e first c a s e t h e d e r iv a tiv e G (1 3 7 ) w ill be n e g a t iv e o n t h e p a r t s P U , P T a n d

T Q ( F i g 4 ) T h e r e fo r e , t h e s t a b ilit y c o n d it io n ( 3 6 ) w ill n o t b e s a tis f ie d o n P T , w h e r e

Tp-J < 0, b u t it w ill b e s a tisfied on P U and Q T; w h ere > 0.

Ngày đăng: 08/04/2015, 15:33

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w