1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Non-linear oscillations of third order systems

6 248 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 2,07 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

b If the characteristic equation has a negative root and a pair of imaginary roots f]sO then we have the critical case.In addition,if Vr pQ/q here p,q are integers,then we have the criti

Trang 1

Proceedings of the

V I I I u

International

Conference on

Nonlinear

Oscillations

PR A G U E 1978

l a t l i t u t * o f T h c r m o m c c h a o i c *

C z e c h o s l o v a k A c f td c my of S c i c a c t *

N O N -LIN E A R O S C IL L A T IO N S

OF T H IR D ORDER SYSTEMS

Ng uyen Van Dao

N ational Ce nt er o f S c i e n t i f i c Re se a r c h

of V i e t n a m , Vien k hoa hoc V i e t n a m - Hanoi

f r e e o s c i l l a t i o n , s e l f - e x c i t e d o s c i l l a t i o n , f o r c e d o s c i l l a t i o n an d p a r a ­

m e t r i c o n e o f t h e d y n a m i c a l s y s t e m d e s c r i b e d by t h i r d o r d e r d i f f e r e n t i a l equation (1) in the critical case are examined systematically by asymp­

Introduction

A l o t o f m e c h a n i c a l and p h y s i c a l p r o b le m s l e a d t o s t u d y o r o s c i l ­

l a t i o n i n t h e 3 y ste m g o v e r n e d by t h e e q u a t i o n o f t h i r d o r d e r

The following definition is accepted

* 2 = - rị + i Q t ^2 = -rj-in ,then we have the non-crỉtical case

b) If the characteristic equation has a negative root and a pair of

imaginary roots (f]sO) then we have the critical case.In addition,if Vr pQ/q here p,q are integers,then we have the critical resonant case

The non-critical case has been investigated in many publications

(see,for example [1-6] ) but the critical case has not,to the author#s knowledge,been examined hitherto.In this work we atudy the non-linear oscillations of the third order system (l) in the critical case.We shall find the family of two parameters particular solution of equation (1) which has strong stability property.To assess the validity of the theory

a series of experiments on the analog computer have been made.The theore­ tical results show a good agreement with the analog computer ones

§1 Non-linear Oscillations in third order autonomous Systems

I»et us consider the following equation

We shall find a partial 'two parameters solution of this equation in form

517

Trang 2

<p « n t *4/ Here a find ^ r r c f u r r t i o ’ip 3 f i t I s f y i r p , tbc f o l l o v i n r , e q u a t i o n s

£Y~ = £ A ^ ( a ) 4 € 2 A ^ ( » ) + C ^ i n ) + e ? B ^ ( a ) f ( 1 3 )

S u b s t i t u t i n g ( 1 > ) , ( ! 3 ) i n t o Í 1 1 ) Zi\r\ c o m p ^ r i n c t h e t e r m s c o r -

tal.nỉn.-r £ rrit1 r ircp , co~vp ’.ve jrt

c a ' ( 4 2+ Q2)' ’ “ 1 ? n , - ’ ( ỉ ? + a 2 )

' - _ ^ 1 Tj 1 D — -‘ 1 - — J I

■|= " n ( | a+n*) ’ ? a i , ( ^ +

A ( 1 - n - M l + m n ) n.2 ( 1 - T , ? ) ( | ? H tn V )

w h e r e r , h , u „ _ , V , r r t h e r o f f f i c i m t r o f ĩ > i » r i ế > r CVỈV n r : ‘ o r : - :

R ( a c o s c f , - i l a s i n < f , - i l ' « ' C C i < p ) s > H h P i n n <f ) , ( Ì ^ )

u I » — rr ( U- oosrrcP H V : : 1 n n < P ) in ^ * n

F o r t h e P u f f i n ; c.-ire R a ~ f i y'^ ,ve r p v e

dt = 2 f ’ fli ? a p 1 ’ p = — -ji— .

r 4 ( 1 + n 2 )

I f fi > 0 t h e 'imp] i t uric o f OGCÍ J.lrt.1 on i n c r e - i f £ ir t l x n e T f 6 < n th(r

" j p p l j t u f ’ e J e c ^ e r s e a

F o r t h e Van d e r To l c.-ise ii = ( 1 - x ^ ) A t h e e q u a t i o n s o f t h e f i r s t approximations are

X * a c o s <p -*■ - 3 “ - R—( 3 0 0 3 ? ^ - i s i n ? ( p ) , ( 1 * 7 )

The stationory amplitude is p- s 2.The oncillation d1f.0 rnms on ftiialoi; - computer are presented on fi£ ! for ( a A s 1 , 6 s ' 1

Trang 3

$2 N o n - l i n e a r O s c i l l a t i o n s i n t ' l i r d o r d e r n o n-cT utononous S y s t e m s

Now v:e s t u d y t h e o s c i 11/ i t i o n s o f t h e fjyiitem g o v e r n e d by e q u a t i o n

X -»• fc * + n ? x + Ị a ? X s t \ ( x f 5 : ,x ) + i P c i m f t , ( 2 1 )

n = s f €6~

The p a r t i ' l l p e r i o d i c s o l u t i o n w i t h p e r j o d 27C / S o f e q u a t i o n (2.1)

i s f o u n d i n t h e form

X « r c o s ( * t + tị») + g u - t i * , + , i t ) + e2u ^ ( a , tị/ , S t) , ( 2 2 )

v/he>*e u ( a , 4 » t i t ) i r e p e r i o d i c f u n c t i o n s w i t h p e r i o d 21T r e l a t i v e l y

end 'St r n d n , Ỷ fire d e t e r m i n e d from t h e e q u a t i o n s

~ * e A1 ( , 4/ ) + £ 2 A2 ( p , 4>) + , e 3 , ( p , 4» ) + £ 2 fl2 ( a , <|> ( 2 3 J Ô.V substituting (2.2), (2 3) into (2.1) and comparing the coeffici-

o n t r o f £ '.rid f l i n cp , COS cp we o b t a i n a f t e r s i m p l e c a ] c u l G t i 0 n 3 :

r ^ s i n f - i c o s ỷ ) - » r n d L r 21 t B H i a * <0 0« l l z i r , 1± í ĩ 21 J ( 2 4 )

u - _ l l l m -'n<rI Hi 2 >> " o 0 2m v 1m- mifro o 1m 1m — o 4 * r2m 9 9 o o •

h e r e r i1f r0 , u tV- r e i - o u r i e r c o e f f i c i e n t s :

n u , 8 - x - f r x = y ( r 1 n c o s n < p + r ? n s i n n < f ) , ( 2 5

n s c

I ^ s 2 _ ^ ( u 1;noos>n<? + v ^ n i n n u p )

-'he s t n t t o n r w y s o l u t i o n o f e q u a t i o n s (2.3) i n t h e f i r s t a p p r o x i m a ­

t i o n Ì 3

7 * r i i + r h - -

519

Trang 4

-+ i r 2 1 ) ] > , > 0 (2.6)

F o r t h e D u f f i n g c a s e R z - p x ^ v/e h a v e t h e f o l ] o v ; i n £ e q u a t i o n o f

r e s o n a n c e c u r v e

The stability condition of the stationary solution ia of form

V = 1 + ± £ a 2 ± %/ i - jL a 4 , P r — * p = -0 ~r~ ' ( 2 - 7 ;

a 2 r V * n 2 a ( fc2+ a ) r M i W )

and t h e n e c c e s c r y c o n d i t i o n f o r t h e s t a b i l i t y o f s o l u t i o n i s 0

F i g u r e 2 i s p r e s e n t e d f o r f r 1 U , f l * 1 , p * x - 1 0 ^ a nd ( c u r v e 1) , p*= 1 , 2 5 1 0“ k ( c u r v e 2 ) The f a t l i n e s c o r r e s p o n d t o t h e s t a b l e s t a t e o f

o s c i l l a t i o n

For the Van der Pol case Rs s(1-x^)x the equation of resonance curve is

V = 1 + -- J -

A*1 , v 2= 1) » Ja4/81 (curve 1), J a 4 / 2 7 (curve 2 ) , J s 8 / 2 7 (curve 3 ) The unstable branches are presented by hatching

- u - 1 ) 2

Js

c )

( | 2+ a2)p2

4 a 2 I 2

( 2 . 8 )

520

Trang 5

-The p r o c e s s o f f r e q u e n c y e n t r a i n m e n t h a s b e e n i n v e s t i g a t e d and

p r e s e n t e d g r a p h i c a l l y i n f i g 4 T h i s f i g u r e show s t h e i n t e r a c t i o n b e t ­

w e e n t h e f o r c e d and s e l f - e x c i t e d o s c i l l a t i o n s i n t h e n e a r r e s o n a n c e

z o n e F o r e x a m p l e , o b s e r v i n g th e o s c i l l a t i o n diagram v/hen i n c r e a s i n g th e

e x c i t d r v f r e q u e n c y Í we s e e f i r s t t h e b e a t I n t h e i n t e r v a l

t h e brat d io a o p e ^ r s :\nd t h e r e i s o n l y t h e h a rm o n ic o s c i l l a t i o n v / i t h

e ' v c i t i n ~ f r e q u e n c y I n c r e a s i n g m o re y we s e e t h a t t h e b e a t a p p e a r s

r.~a i n A s i t i s Sfcf.n i n t h e f i g u r e 4 t h e f r e a u e n c y e n t r a i n m e n t z o n e ỈS

n r r r o p r t h e r t h r t i n t h e s e c o n d o r d e r s y s t e m Ị l ừ Ị T h i s phen o m en o n

war: o b s e r v e d on n n a l o ' ' - c o m p u t e r t o o

fig 4 r

3 Non-autonomous Systems (continued)

Parametric Ocnillotion of third order non-linear System

? h e f o l l o w i n g e q u a t i o n

i X - Q2 X + l a ' x + e [ k x 3+ h7?+ R ( x , s , x ) - C X C 0 3 t f t ] s O , ( 3 1 )

£A * n 2 (1- f|2 ) , r ỵ s t / ĩ a hns b een investigated.The partial two parameters

s o l u t i o n o f ( 3 1 ) i s f o u n d ỉ n t h e s e r i e s

X = -COof | t + i | o + e u , { n 9 | t ) + «2u2(n, 4 > , | t ) + ( 3 2)

521

Trang 6

ẫ t :7 ^ [8(k- ỉ - o c o ^ - §f l : , i n?+H n 3 , ( %3)

& ■ Ĩ T ĩ r ^ - [ í ( í 2 ^ 2jA“ 4 f , « l : + Q - V ) r ^ r , i r 2* - g | c o c ? Ỷ +R , ] ,

H1 » <K0C0!5cf> + | l <E0::in4>> , r?2 » ự < v * 0 = * > - < V s i ” *F> •

HQ s H(acor «f , - «^o.Rin<p ^ ^C03<f ).

Tr r i - 5 t h e a'Tip'J' t i l de c u r v e '»£: p i " tic.*? f o r t h e n , * i u 2 0 , i s i l « 1 j

c « O C5 1 k s -0 1 iinri h s C ( c u r v e 1) , ‘'l * • r> (c irv G 2) /’.rid h * c 1

( c u r v e 3) 1 h e r e k s e ’ / n , h s e h / a ; , c * C c / s i .■

v/h*re a, Ỷ satisfy

T h e i n f l u e n c ei ỉ i ; i J J .'.uv:.V /V * */ -J u L u ' u oulo^b 'Tri.ct.ionI J J v> 1 « u 11 u 1 1 r.i;~nx on O'-«’%rv“i?t?,i c

I t ’t i c n was s t u d i e d , i n t h i c c.-tco t h e r e s o n a n c e c u r v e h i ư c 1 r r e rorr»

S e e r : l £ j b f o r t * f l s 1 , h s 0 l 5 , k s - 0 , 1 , c = 0 ' o .'VV? ! j * a 2 , 5

( c u r v e l ) , h * s 5.10*; ( c u r v e 2 ) t y * s Z \ / t ! •

a

0.3

ft 2

Ỡ./

f i g 6

5 22

Ngày đăng: 08/04/2015, 15:30

TỪ KHÓA LIÊN QUAN