1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Quasilinear oscillations in systems with large static deflections

30 213 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 9,62 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

However, we will concentrate... T h e ivy dashed lines in this figure correspond to the stability instability oscillations... In the resonance zone n RJU, the equation 51 gives approxim

Trang 1

P r o c e e d in g s o f th e In ter n a tio n a l C on flu en ce on A p p lied D y n a m ic s H a n oi, 2 0 -2 5 /1 1 /1 9 9 5

QƯASELINEAR OSCILLATIONS IN SYSTEMS WITH LARGE STATIC DEFLECTIONS

N g u y e n V a n D a o

V i e t n a m N at i o n a l Uni ver sity, H a n o i

A b str a c t

In m e c h a n i c a l s y s t e m s the s tati c dcflcction o f the clastic e l emen ts is usual not

a pp ea r ed in the equations of m o t i o n The reason is that either a li near mod el of the clast ic e l emen ts or their too s m a l l s t a ti c dcflccti on a s s u m p t i o n was acccptcd

In the p r e s e n t paper both nonlinear model of clastic e l e me n t s and their large s tati c

d c f i c c t i o n arc con si der ed , 30 that the n o n l i n e a r t e r m s i n the equ at i on o f m o t i o n

a p p e a r with different degrees o f s m al l n es s In this case the nonlincarxty o f the s y s ­

t e m d e p e n d s not only on the nonlinear ch ar act er i st i c o f the clastic e l e m e n t but on its s t a t i c i t f l c c t i o n The distinguishing f eature o f the s y s t e m under co n si de r at i on

is t ha t i f the clastic e l e m e n t had soft c h a r ac t er i s t i c, the nonlinear s y s t e m also be- longs to the soft OTI C If the clastic e l e m e n t has hard char acter ist ic, the s y s t e m

m a y be ei t her soft or hard or neutral type, d ep en di ng on the relationship between the p a r a m e t e r s of the clastic e l e me n t a nd i t s st at i c deflection.

The a u t o n o m o u s and n o n - a u t o n o m o u s s y s t e m have been s t u d i e d A n a l y t i c a l m e t h ­ ods in c om bi na ti on with Computer have b t t n used.

The p r ob le m of n on li near oscil lati ons o f clastic s tr uct ur es with large s tat i c d e ­

f l e c t i o n in general, and beams, plates in particul ar, m a y be studied in a s i m i l a r

Trang 2

s t a t i c e q u il ib r iu m p o s it io n T h Ì3 p o s it io n is c h o sen aa th e referen ce p o s itio n

W h e n 1 = 0 , t h e sp r in g force C0A + £ 0A 3 is eq u al to th e g r a v it a t io n a l force

w h e r e e is a s m a l l p o s i t i v e p a r a m e t e r In th is ca se Ax2 is fin ite.

T a k i n g in t o a c c o u n t t h e v is c o u s d a m p in g force h0x and e x c it in g force P [ t , z)

w h i c h are b o t h a s s u m e d to be s m a ll q u a n t it ie s o f sec o n d d eg ree and in tro ­

th e in flu e n c e o f th e forces on th e m o t io n of th e m a s s M can be fo u n d in th e

s e c o n d a p p r o x i m a t i o n o f th e s o lu t io n In the p r e se n t p ap er a m o re gen eral

e q u a t i o n w ill be in v e s t i g a t e d

X + u i 2 i = e - 7 12 + c2F{r, < p ( t ) , x , i ) , (4)

Trang 3

ìe re r is a s lo w t i m e T = et, F(r, <p[r), X, x) is t h e p e r io d ic f u n c t io n r e la t iv e ly

ip w i t h p e r io d 2 rr w h i c h ca n be r ep resen ted in t h e fo r m

NF[r,<pl x,i) = ^ 2

l a t i v e l y t o r for all fin ite values o f r W e w ill b e s p e c ia l ly in t e r e s t e d in

e s t u d y o f t h e r e s o n a n c e zon e w h e n w is n ear t o - u, w h e r e p a n d q are

here U i ( a , 0) are p e r io d ic fu n c t io n s o f 6 w i t h p e r io d 2ir w h ic h d o n o t c o n t a in

e first harmonics sinớ, C08Ổ and a, 9 satisfy the equations:

Trang 4

C o m p a r in g th e first h a rm o n ics sinớ and COS $ in the second e q u a tio n of (8)

w h e r e ( / ) is a v e r a g e d valu ed o n t im e o f th e fu n c tio n / We consider now

g u i s h i n g fe a tu r e o f th e s y s t e m w i t h large s t a t i c d e fle c tio n T h e param eter

a d e p e n d s o n t h e p a r a m e t e r s c0 , /?„ (sp rin g ) and A ( s t a t i c deflection)

T h e c o n s id e r e d D u ffin g e q u a t io n is m o d e le d [3] on th e c o m p u t e r for a con­

(13)

Trang 6

a n d e r P o 1 /

Trang 7

mparing the coefficient of c and c2 we obtain:

2 / \ d 2 t i ỵ d 2 U i n d 2 U i 2

= ^a2 cos2 0 — — -y (r )) — 2awBi j COS 9

+ Ị(w - ~u{r) ) a~Q~p' + 2w-Ai] «in

\jialogou sly, we can find A i, B i and u2 from the equation (18) for the

general form of the function F ( r t ip, x , x ) However, we will concentrate

Trang 9

1 = + 0.1 ( F i g 5 ) , - - 0.1 ( F i g 6 ) w i t h t h e in itia l valu es: t = 0 ,

e s t a t i o n a r y a m p l i t u d e s c o r r e s p o n d in g t o th e c o n s t a n t v a lu e s o f t h e fre-

ỉn c y V are p r e s e n t e d in th e F i g 7 for t h e v a lu e s m e n t io n e d a b o v e o f / , and + 0.1 (c u r v e 1), a = 0 (cu r v e 2 ) , = - 0.1 (c u r v e 3 ) T h e

ivy (dashed) lines in this figure correspond to the stability (instability) oscillations.

m p a r i n g t h e F i g s 5, 6 a n d F ig 7 it is see n t h a t in c r e a s in g th e v e lo c i t y o f ssin g t h r o u g h th e r e s o n a n c e , th e m a x i m u m o f th e a m p l i t u d e d e c r e a s e and

s p e a k a p p e a r a fter t h e r e s o n a n c e p ea k T h e m a x i m u m o f th e a m p l i t u d e s

s t a t i o n a r y o s c i l l a t i o n s is b ig g e s t.

Fi g 5

Trang 10

Fig 6

I

Fig 7

Trang 12

Fig 8

Fig 9

Trang 13

\.RT n

L this part two following problems have been examined:

I T h e n o n - l i n e a r o s c il la t io n s o f e l e c t r o m e c h a n i c a l s y s t e m s w i t h lim it e d Dwer s u p p l y a n d la r g e s t a t i c d e fle c tio n o f th e e la s t ic e le m e n t s

ie non-linear terms w ith different degrees of smallness in the equations of

ap p ly are c o n s id e r e d T h e e q u a t io n s o f m o t io n o f th e s y s t e m un der c o n sid -

ra tio n are d iffe re n t w i t h th o se o f cla ssic a l p r o b le m [5] by th e a p p e a r a n c e o f

l e n o n - lin e a r te r m s w i t h different d e g r ee s o f s m a lln e s s T h is fe a tu r e le a d s

D t h e d e p e n d e n c e o f t h e h a r d n e s s o f th e s y s t e m n o o n ly o n th e p a r a m e t e r s

f t h e e l a s t i c e l e m e n t b u t also o n its s t a t i c d e fle c tio n

'he r e s u l t s o b t a i n e d are differen t in b o t h q u a lity a n d q u a n t it y w i t h t h o s e

b t a i n e d b y K o n o n e n k o V o [5]

E q u a tio n s of m o tio n

ig 10 ill u s t r a t e s a m a c h in e w i t h a pair o f c o u n t e r r o t a t in g ro to r s o f eq u a l

n b a l a n c e (so t h a t h o r iz o n t a l c o m p o n e n t s o f t h e c e n tr ifu g a l force v e c t o r s

Trang 15

w h e r e Ui[a,rp,ip) d o n o t c o n t a in th e first h a r m o n ic s cosrp, s i nrp, = <p + 0

a n d are p e r i o d i c f u n c t io n s o f rp an d <p w i t h p e r io d 2ir, a n d a, 6 are f u n c t io n s

Trang 16

T o d e t e r m i n e th e u n k n o w n fu n c tio n s Ai , Bi, U,- we d iffe re n tia te th e e x p r e s ­

X = — CLOJ COS0 + tf I Ị(u/ — n ) 2a w B ij COS t/i — Ị(u — n)

Trang 17

) m p a r in g the coefficients of the h a rm o n ic s in (42) we have

Trang 18

In the resonance zone n RJU, the equation (51) gives approximately

Trang 19

6

Trang 20

30 t h a t /V is n e g a t iv e H ence, D i is alw ays p o s itiv e

T h e second s ta b ility condition Ữ3 > 0 as shown by Kononenko ’5 ’ is the most im p o rta n t one T h is condition is equivalent to the inequality

(61

(62)

where = $ u (n, a(n), Ớ(Q)) and o(n), Ớ(D) are found from the last two

eq uation s of (50); nam ely

where w is of the form (52) and Ơ2 is a positive constant Now, the sta b ility

c o n d itio n (63) can be represented in the form

(64)

Trang 22

in d P T a n d n e g a t i v e on Q T T h e re fo r e th e c o n d it io n (6 4 ) is s a tis fie d on

3 T P and is n o t s a tisfie d on P U ( F ig 13).

Fig 12

II w e a k i n t e r a c t i o n b e t w e e n t h e s e l f - e x c i t e d a n d p a r a m e t r i c o s c i l ­

l a t i o n s IN THE SYSTEM WITH LARGE STATIC DEFLECTION

T h e p r e se n t s e c t i o n d ea ls w it h s o m e r ela ted p r o b le m s w h e n tw o m echa­nism s e x c i t i n g th e s e lf - s u s t a in e d o s c illa tio n and p a r a m e tr ic one coexist in one system Following the assum ptions in [41, these oscillations are w eak

T h e y a p p e a r o n ly in th e s e c o n d a p p r o x im a t io n of th e s o lu tio n and th eir

its sta tic deflection Nam ely, when the in it ia l system has a hard c h a r a c t e r ­

is tic , th e r e s o n a n c e c u r v e may b e lo n g to a s o ft ty p e T h e r e fo r e , th e r esu lts

o b t a i n e d are d ifferen t w ith th e c la ss ic a l o n e s b o t h in q u a lity and q u a n tity

Trang 23

E q u ation o f m o tio n and approxim ate solu tion

ing t h e a s s u m p t i o n s a n d n o t a tio n s in t h e p r e v io u s p a p er [4 ] w e s t u d y : o s c il la t io n s d e s c r i b e d by the eq u a tio n :

ie parametric and self-excited oscillations have a comm on feature that

i o r ig in X = X = 0 is u n s t a b le U n d er t h e r e s o n a n c e c o n d i t i o n t h e s e

:illators may have a certain interaction

ie solution of the equation (66) is found in the form

I = a COS 6 + cuxỊa, <p, 6) + c2u2(a, <p, Ớ) + e3 , (67)

lere 9 — — + Tp, <p = 1/t and u, are p e r io d ic fu n c tio n s o f <p an d 8 w it h p e r io d

<p = v t , R [ 0 , f ? i ) = i ỉ ( i 4 i , 0 ) = 0 ,

F { t p , X , i ) = — [/? x 3 + D ( ơ x 2 — l ) i — c x c o s v=»], ( 7 1 )

a cos 6, —CLU1 sin 6) = F[tp, I , i )

C O * 9

Trang 24

C o m p a rin g the coefficients of the first h arm o nics sin 0 and COS 9 in (70) yields

C o m p a r i n g the coefficients of the harmonics in (69) we have

E q u a tio n ^ -(76) have a triv ia l solution a = 0 T h e non t r iv ia l sta tio n a ry

a m p litu d e a 0 and phase \Ịi are determ ined by equations ^ = 0, — = 0 or

( ƠCL2 \

2 ụ j j j D y l -— J = c s i n2</>0,

4 ụ u (^1 - + — a ' J = í c c o s 2 t/>0 ,

Trang 25

sre /i 5= — E lim in a t in g the phase Tp0 gives

u;2 = 0.01 (curve l ) and a = 0 (curve 2)

a b ility of the sta tio n a ry solution obtained is investigated by u sing the

n a tio n a l eq uatio n s D eno tin g the right hand sides of the equations (76)

p and Q , resp ectively, we have

lere the su b sc rip t “o” m eans th at the d erivative s are calcu la te d for sta -

in a ry valu e s a 0, rp0. T h e sta b ility co n d itio ns are

snce, we have

the figure 14 the h eavy (dashed) b ran ch corresponds to the s t a b ilit y

n s ta b ility ) of sta tio n a ry solution where the in e q u alitie s (80) are satisfied

Trang 26

To stu d y the s ta b ility of the zero so lutio n a = 0 we introduce in (76) n e w

varia b le s y, z connected w ith a and rp by the relation s:

where n o n -w ritte n term s contain y and z w ith high degrees

T h e o rig in y = z = 0 (a = 0) of this system is alw ays unstable, because the c h a ra c te ristic equation of the lin e a r term s of (82) has the roots w ith

p o sitiv e real p art

F ig l ị

III w e a k i n t e r a c t i o n o f s e l f - e x c i t e d o s c i l l a t i o n w i t h f o r c e d o n e in

N O N L IN E A R SYSTEM S WITH LARGE STATIC DEFLECTION

In th is section the attention is concentrated on stu d yin g the co n d itio ns under w h ich the resonance regimes of o scillatio n s occur, on e x p la in in g the role of n o n -lin e a r factors in the form ation of resonance situ a tio n s of the system s w ith large sta tic deflection of elastic elem ents [4] T h e d is tin g u is h ­ing feature of these system s is thut their n o n -lin e a rity essentially depends not o n ly on the ch a ra cte ristic of t ie elastic clem ent but also on the static deflection

Trang 27

le ch a ra c te r m entioned has sig n ifican t influence on the in te ra ctio n of self­cited o scilla tio n s w ith the forced ones, in both q u a n tity and q u a lity.

E q u a t i o n o f m o t i o n and c o n s t r u c t i o n o f a p p r o x i m a t e s o l u t i o n s

t us consider some specificities of forced o scilla tio n in the self-excited stem whose m otion is supported by the “n egative” frictio n T h e follow ing

u a tio n w ill be investigated:

le re the notatio ns in [4] are utilize d u , 7, /9, V, ơ, D , E are constants,

> 0 , *7/9 > 0 , V > 0 , u > 0 , a > 0 a n d t > 0 is a s m a l l p o s i t i v e p a r a m e t e r ,

h e n E = 0 equation (83) d e s c r i b e s a self-excited s y s t e m W h e n D = 0 we ive a forced system w ith harm o nic e xcitatio n In this paper it is assum ed

at D E 0- T h e question is stated as follows: w hat happens in the

s t e m ( 8 3 ) w h e n t w o m e c h a n i s m s o f g e n e r a t i o n o f s e l f - e x c i t e d o s c i l l a t i o n

id forced one co e x ist? We w ill be sp e cia lly interested in the sta tio n a ry

d ila t io n s and their sta b ility

sing the a sym p to tic method [1] we find the ap proxim ate so lutio ns of the

u a tio n (83) in the form :

le re u, are p erio d ic functions of ip and 8 w ith period 2ir w hich do not

n ta in the first h arm o n ics sinổ, COS 8, <p = v t, Ỡ = ut + rp, and a, 0 are iterm ined from the equations:

be in te n siv e in te ra ctio n of m echanism s of generation of the o scilla tio n s

d ifferent nature can be observed in the resonance situ a tio n s In this

in n ectio n , below the resonance case w ill be considered, supposing th at u

near to u

y d iffe re n tia tin g the expression (84) and su b stitu tin g the results in to (83)

id by co m p a rin g the coefficients of t and e2 we have:

Ngày đăng: 08/04/2015, 15:32

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN