1. Trang chủ
  2. » Giáo án - Bài giảng

tiet 1,2

8 89 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 453 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiến thức: Biết định nghĩa, kí hiệu về căn bậc hai số học của số không âm, liên hệ của phép khai phương với quan hệ thứ tự.. Kĩ năng: Tìm căn bậc hai của một số không âm; so sánh các căn

Trang 1

Ngày soạn 12/08/2013

Ngày dạy: 19/08/203

Tuần 1; Tiết PPCT 1

Chương I: CĂN BẬC HAI CĂN BẬC BA

Bài 1 CĂN BẬC HAI

I MỤC TIÊU

1 Kiến thức: Biết định nghĩa, kí hiệu về căn bậc hai số học của số không âm, liên hệ của phép khai phương với quan hệ thứ tự

2 Kĩ năng: Tìm căn bậc hai của một số không âm; so sánh các căn bậc hai số học; tìm số không âm thỏa mãn bất đẳng thức

3 Thái độ: Thấy được ý nghĩa của phép khai phương trong hình học

II CHUẨN BỊ

GV: giáo án ; bảng phụ ghi định nghĩa; chú ý; định lí ; phiếu học tập ghi ?3?5

HS: Ôn lại kiến thức căn bậc hai ở lớp 7; SGK; dụng cụ học tập

III TIẾN TRÌNH DẠY HỌC

1 Ổn định lớp ( 1 phút)

2 Kiểm tra bài cũ (7 phút)

GV: nêu yêu cầu về :

+Dụng cụ đồ dùng học tập: sgk, sbt, vở ghi , vở bài tập

Vở nháp; bảng phụ nhóm, bút dạ, thước kẻ, bút mực

+Phương pháp học tập bộ môn: Tích cực, chủ động sáng tạo, phát hiện và giải quyết vấn

đề thông qua hoạt động cá nhân, nhóm ,thảo luận cả lớp , mạnh dạn trình bày ý kiến, cố gắng tự giải bài tập ở nhà

GV: Giới thiệu chương trình ĐS 9 : Gồm 4 chương:

Chương I: Căn bậc hai Căn bậc ba

Chương II: Hàm số bậc nhất

Chương III: Hệ hai phương trình bậc nhất hai ẩn

Chương IV: Hàm số y = ax2 Phương trình bậc hai một ẩn

GV: Nêu yêu cầu về kiến thức và kĩ năng cần đạt được ở chương I:

Kiến thức:Hiểu khái niệm căn bậc hai của số không âm, kí hiệu căn bậc hai, phân biệt

được căn bậc hai dương và căn bậc hai âm của cùng một số dương, định nghĩa căn bậc hai

số học.Hiểu khái niệm căn bậc ba của một số thực

Kĩ năng: - Tính được căn bậc hai của số hoặc biểu thức là bình phương của số hoặc bình

phương của biểu thức khác

- Thực hiện được các phép tính về căn bậc hai: khai phương một tích và nhân các căn thức bậc hai, khai phương một thương và chia các căn thức bậc hai

- Thực hiện được các phép biến đổi đơn giản về căn bậc hai: đưa thừa số ra ngoài dấu căn, đưa thừa số vào trong dấu căn, khử mẫu của biểu thức lấy căn, trục căn thức ở mẫu

- Biết dùng bảng số và máy tính bỏ túi để tính căn bậc hai của số dương cho trước

- Tính được căn bậc ba của các số biểu diễn được thành lập phương của số khác

Trang 2

3 Bài mới

Ở tiết học hôm nay các em được biết định nghĩa, kí hiệu về căn bậc hai số học của số không âm, hiểu về liên hệ của phép khai phương với quan hệ thứ tự

HĐ 1 Căn bậc hai số

học(16p)

- Nêu định nghĩa căn bậc

hai của một số a không

âm?

GV Cho ví dụ

- Số dương a có mấy căn

bậc hai? Cho VD viết

dươi dạng kí hiệu?

- GV nêu ví dụ minh họa?

- GV vậy nếu có x2 = a (a

≥ 0) thì x =?

- Số 0 có mấy căn bậc

hai ? là số nào?

- GV cho HS thảo luận ?

1 / Sgk

GV: 4(2) gọi là căn bậc

hai số học của 4

Vậy ta có định nghĩa căn

bậc hai số học như sau

(SGK)

GV lưu ý căn bậc hai số

học chính là giá trị không

âm của căn bậc hai của số

a≥ 0)

GV nêu chú ý vừa ghi

tóm tắt

- GV cho HS thảo luận ?

2 Sgk và yêu cầu HS đọc

giải mẫu (Sgk-5) và trình

- HS: trả lời như SGK

+)Sè dương a cã hai c¨n bËc hai lµ hai số đối nhau :số dương kí hiệu là

avµ số âm kí hiệu là

a

Hs x2= a(a≥ 0)=> x=± a

+) số 0 có một căn bậc hai là chính số 0 ta viết

0= 0 + HS thảo luận ?1 / Sgk trả lời miệng

a,CBH của 9 là 3 và -3

b, CBH của

9

4

3

2

và -

3 2

c) CBH của 0,25 là 0,5 và -0,5

d, CBH của 2 là: 2 và

-2

- Hai HS đọc lại định nghĩa

HS thảo luận ?2 Sgk đọc giải mẫu (Sgk-5) và trình bày bảng các phần

1 Căn bậc hai số học

+) Căn bậc hai của một số a không âm là số x sao cho x2= a

Ví dụ: căn bậc hai của 4 là 2 và

-2 (Vì 2 2 = 4 và (-2) 2 = 4 )

+)Số dương a có hai căn bậc hai

là hai số đối nhau :số dương kí hiệu là avà số âm kí hiệu là

a

Ví dụ:

Căn bậc hai của 4 là 4 (=2)

Và - 4 (= -2) Vậy x2= a(a≥ 0)=> x=± a

+) số 0 có một căn bậc hai là chính số 0 ta viết 0= 0

Định nghĩa (Sgk/4)

Chú ý: (SGK)

a

=

a x

x

2

0 (a ≥ 0 )

?2 Tìm căn bậc hai số học của các số sau: 49; 64 ; 1,21

a, 49 = 7 vì: 7≥ 0 và 72 = 49

b, 64 = 8 vì: 8≥ 0 và 82 = 64

d, 1 , 21= 1,1 vì: 1,1≥ 0 và (1,1)2

= 1,21 Phép toán tìm căn bậc hai số học

của sô không âm gọi là phép

Trang 3

bày bảng các phần còn lại

- GV: Giới thiệu phép

khai phương

- GV yêu cầu HS làm ?3

- Qua định nghĩa về CBH

số học của các số dương

ta có thể tìm CBH của các

số dương bằng cách tìm

CBH số học và lấy thêm

dấu (-) để được số đối

- GV treo bảng phụ ghi

nội dung bài tập và phát

phiếu học tập cho h/s thảo

luận nhóm và trả lời

miệng (5 phút)

- Qua bài 6 này GV khắc

sâu lại định nghĩa CBH và

CBH số học

còn lại

HS làm ?3

- Hs trả lời miệng

?3 Tìm CBH của các số sau:

- CBH của 64 là 8 và - 8

- CBH của 81 là 9 và - 9

- CBH của 1,21 là 1,1 và -1,1

* Bài 6: (SBT/4)

a, S; b, Đ; c, Đ; d, S; e, S

khai phương.

* Bài 6: (SBT/4) Tìm khẳng định đúng trong các khẳng định sau:

a, CBH của 0,36 là - 0,6

b, CBH của 0,36 là 0,6 và - 0,6

c, 0 , 36 =0,6

d, 0 , 36 = ±0,6

e, CBH của 0,36 là 0,6

2.So sánh các căn bậc

hai số học (15p)

+) GV ĐVĐ: cho 2 số a

và b không âm So sánh:

- Nếu a < b thì a

b như thế nào?

- Vậy: Nếu a < b thì a

và b như thế nào?

+) GV Khắc sâu nội dung

định lí

(Sgk-5)

– GV yêu cầu HS làm ?

4 (Sgk)

+) GV giới thiệu nội dung

ví dụ 3

+) GV lưu ý cách làm

dạng bài tập này

- HS: Nếu a < b thì a

< b

Nếu a < b thì a < b

- HS đọc ví dụ 2 (Sgk - 6)

và lời giải

HS làm ?4 (Sgk) theo nhóm

- HS đọc và trả lời các câu hỏi của GV

(Giải thích tại sao ?)

2 So sánh các căn bậc hai số học

Định lí: (Sgk-5)

a ≥0, b≥0, a < b ⇔ a < b

Ví dụ 2: So sánh

a, 1 và 2

Vì 1 < 2 ⇒ 1 < 2 vậy 1 < 2

b, 2 và 5

Vì 4 < 5 ⇒ 4 < 5 vậy 2 < 5

?4 So sánh :

a, 4 và 15 Vì16 >15 ⇒ 16 > 15 ⇒4 > 15

b, 11 và 3 Vì: 11> 9 ⇒ 11 > 9 ⇒ 11 > 3

Ví dụ 3: Tìm x không âm biết:

a, x > 2

Vì 2 = 4 nên x > 2⇒ x> 4

Vì x ≥ 0 nên x > 4 ⇔ x > 4

Vậy x > 4

b, x<1

Vì 1 = 1 nên x <1 ⇒ x< 1

Vì x ≥ 0 nên x < 1 ⇔x <1

Vậy 0≤ x <1

Trang 4

+) GV cho 2HS làm ?5

trên bảng

- GV nhận xét

2HS làm ?5 trên bảng

- HS nhận xét

?5 Tìm số x không âm, biết : a) x>1

vì 1 = 1 nên x>1 => x> 1

vì x ≥ 0 nên x > 1 ⇔x >1

vậy x > 1 b) x< 3

Vì 3 = 9 nên x <3⇒ x< 9

Vì x ≥ 0 nên x < 9 ⇔x < 9

Vậy 0≤ x < 9

4 Củng cố (5p)

Bài tập: Trong các số sau, số nào có căn bậc hai ? 3; 1,5; 0; -16;

4

1

; 7; 0,49;

-4

25

HS trả lời miệng: Các số có căn bậc hai là: 3; 1,5; 0;

4

1

; 7; 0,49

- GV Lưu ý điều kiện a ≥ 0

- GV: Hướng dẫn HS sử dụng máy

tính bỏ túi để tính giá trị gần đúng

nghiệm của phương trình :

x2 = 2 ⇒ x = 2 ⇒ x ≈ ±1,414

- GV khắc sâu các kiến thức đã vận dụng và cách làm các dạng bài tập trên

5 Hướng dẫn về nhà (1p)

- Nắm vững định nghĩa CBH số học, định lí về so sánh các căn bậc hai số học và áp dụng vào làm bài tập

- Học thuộc, hiểu và viết được công thức định nghĩa; định lí CBH số học

- Làm bài 1; 2; 4 (Sgk/6+7) - Bài 1; 4; 7 (SBT/3+4)

- Đọc trước bài 2 và ôn tập về định lí Pytago và qui tắc giá trị tuyệt đối ở lớp 7

IV RÚT KINH NGHIỆM

…… ………

………

………

Trang 5

Ngày soạn 12/08/2013

Ngày dạy 19/08/2013

Tuần 1; Tiết PPCT 2

Bài 2 CĂN THỨC BẬC HAI HẰNG ĐẲNG THỨC A2 = A

I MỤC TIÊU

1 Kiến thức: Biết khái niệm về căn thức bậc hai, điều kiện xác định của căn thức

Biết cách chứng minh định lí a2 = a , hiểu hằng đẳng thức A2 = A

2 Kĩ năng: Tìm điều kiện xác định của A; Vận dụng đinh lí a2 = a , hằng đẳng thức

2

A = A để tính toán ,rút gọn biểu thức

3 Thái độ: tích cực , chủ động

II CHUẨN BỊ

GV: SGK, Bảng phụ, phấn màu

HS: ôn tập về định lí Pytago và qui tắc giá trị tuyệt đối ở lớp 7 giấy nháp

III TIẾN TRÌNH DẠY HỌC

1 Ổn định lớp ( 1 phút)

2 Kiểm tra bài cũ (5 phút)

1.Phát biểu định nghĩa căn

bậc hai số học

Tìm căn bậc hai số học của

các số sau: 169 ; 225

2.So sánh 7 và 47 ;

b, Tìm x không âm,biết x

< 2

HS 1: Với số dương a, số a được gọi là căn bậc hai số học của a

Số 0 cũng được gọi là căn bậc hai số học của 0

169 = 13, vì 13 ≥0 và 132 = 169

225 = 15, vì 15 ≥0 và 152 = 225

HS 2: a, 49 > 47 nên 49 > 47 mà 49 =7 .Vậy 7 > 47

b, 2 = 4, nên x < 2 có nghĩa là x < 4

Vì x ≥ 0 nên x < 4  x < 4 Vậy x < 4

1đ 3đ 3đ 4đ

3đ 3đ

3 Bài mới ( 30p)

GV Hôm nay chúng ta sẽ tìm hiểu về căn thức bậc hai, điều kiện xác định của căn thức hằng đẳng thức A2 = A Thông qua đo chúng ta sẽ biết tìm điều kiện xác định của A; Vận dụng đinh lí a2 = a , hằng đẳng thức A2 = A để tính toán ,rút gọn biểu thức

HĐ 1 Căn thức bậc hai

(12p)

+) GV treo bảng phụ

ghi ?1 và yêu cầu h/s đọc

- Tại sao AB = 25 x− 2

cm ?

- HS trả lời miệng: Trong

∆ABC vuông tại B Có

BC2 = AB2 + AC2

⇒ AB = 5 2 −x2 ⇒AB =

2

25 x− (cm)

- Hai HS đọc tổng quát

1 Căn thức bậc hai

Người ta gọi 25 x− 2 là căn thức bậc hai của 25 - x2, còn 25 - x2 là biểu thức lấy căn

Tổng quát:

- Với A là biểu thức đại số

Trang 6

+) GV giới thiệu k/n căn

thức bậc hai và khắc sõu

khỏi niệm qua ?1

+) GV lưu ý khỏi niệm

căn thức bậc hai và căn

bậc hai của một số a≥ 0

-Vậy A xỏc định (cú

nghĩa) khi nào ?

+) GV khắc sõu điều kiện

cú nghĩa của căn thức bậc

hai và CBH của một số a

0

+ GV hướng dẫn HS cỏch

tỡm đ/k xỏc định của A

- Yờu cầu hs làm ?2 Sgk

(Sgk/8)

A xỏc định(cú nghĩa) khi A≥ 0

hs làm ?2 Sgk Với giỏ trị nào của x thỡ 5 − 2xxỏc định ?

người ta gọi A là căn thức bậc hai của A

Cũn A được gọi là biểu thức lấy căn hay biểu thức dưới dấu căn

A xỏc định(cú nghĩa) khi

A≥ 0

Vớ dụ 1: 3x là căn thức bậc hai của 3x, 3x xỏc định khi 3x ≥ 0 Tức là khi x ≥ 0

?2 5−2x xác định khi 5- 2x≥ 0

⇔ -2x ≥ -5 ⇔ x

2

5

Vậy với x

2

5

≤ thỡ 5−2xxỏc

định

2 Hằng đẳng thức

2

A = A : (18 phỳt)

+GV treo bảng phụ và

phỏt phiếu học tập ghi ?3

(Sgk- 9)

- Nhận xột gỡ về quan hệ

giữa a và a2 ?

- Với mọi số a ta cú

2

a = ?

+) GV ĐVĐ ⇒ định lớ

(Sgk - 9)

- Để C/M: a2 = a ta

cần chứng minh điều gỡ ?

- GV hướng dẫn HS

chứng minh từng trường

hợp (đ/k của a)

- Hai HS lờn bảng điền vào ụ trống; cỏc nhúm hoàn thành phiếu học tập

- Nhúm 1: Hai cột đầu tiờn

- Nhúm 2: Ba cột sau cựng

- Nhận xột bài làm của bạn

và của cỏc nhúm ?

+) a ≥ 0 thỡ a2 = a +) a ≤ 0 thỡ a2 = - a Với mọi số a ta cú a2 =a

- HS đọc định lớ (Sgk - 9)

HS: a2 = a



=

2 2

0

a a a

2 Hằng đẳng thức A 2 = A

?3 Điền số thớch hợp vào ụ trống trong bảng

2

Định lớ: (Sgk / 9)

Với mọi số a, ta cú a2 = a

* Chứng minh: ( Sgk - 9)

- Nếu a ≥0 thỡ a = a ⇒( )2

a = a2

- Nếu a < 0 thỡ a =- a⇒( )2

a

=(-a)2 = a2

Do đú ( )2

a = a2 với mọi số a, hay

2

a = |a|

Vớ dụ 2: Tớnh a, 12 2 b, ( )2

7

Giải:

a, 12 2 = 12 = 12

b, ( )− 7 2 = − 7 = 7

Vớ dụ 3: Rỳt gọn

Trang 7

Gv hướng dẫn HS làm ví

dụ 3

- GV nêu chú ý

+) A2 = A nếu A

+) A2 = - A nếu A

- GV yêu cầu học sinh

thảo luận nhóm ví dụ 4

(Sgk-10), sau 2 phút đại

diện 2 nhóm lên trình bày

bảng

- Tại sao x− 2 = x− 2 ?

- Tại sao a3 = - a3 ?

- GV khắc sâu lại cách

làm; lưu ý cách chia các

trường hợp

HS làm ví dụ 3

thảo luận nhóm ví dụ 4 (Sgk-10), sau 2 phút đại diện 2 nhóm lên trình bày bảng

a, ( )2

1

2 − b, ( )2

5

2 −

Giải:

a, ( )2

1

2 − = 2 − 1 = 2−1(vì 1

2 > ) Vậy ( )2

1

2 − = 2 − 1

b, ( )2

5

2 − = 2− 5 = 5 − 2 (vì 2 < 5)Vậy ( )2

5

2 − = 5 − 2

* Chú ý: (Sgk-10)

+) A2 = A nếu A ≥ 0

+) A2 = - A nếu A < 0

Ví dụ 4: Rút gọn

a, ( )2

2

x với x ≥ 2

b, a6 với a < 0 Giải:

a, (x− 2)2 = x− 2 = x− 2 vì x ≥ 2 Vậy ( )2

2

x = x - 2 với x ≥ 2

b, a6 = ( )3 2

a = a3 = - a3 vì a <0 Vậy a6 = - a3 với a < 0

4 Củng cố (5p)

+) A xác định (có nghĩa) khi nào ?

+) A2 = ? khi A ≥ 0; khi A < 0

- Chia nhóm nửa lớp làm phần a, c; nửa lớp còn lại làm phần b, d bài 9 (Sgk - 11)

- GV kiểm tra bài làm của các nhóm và nhận xét, đánh giá kết quả bài làm của h/s

*) Bài tập 9 - Kết quả: a) x = ± 7; b) x = ± 8

c) Đưa về 2x = 6 => x = ± 3

d) Tương tự x = ± 4

5 Hướng dẫn về nhà (1p)

- Học thuộc định nghĩa CBH số học; điều kiện để A có nghĩa; hằng đẳng thức A2 = A

- Hiểu được cách chứng minh định lí: Với ∀a ∈R ta có a2 = a

- Bài tập về nhà: Làm bài 7; 8; 10; 11; 12; 13 (Sgk-10)

- Hướng dẫn về nhà: Ôn tập lại các HĐT đáng nhớ và cách biểu diễn nghiệm của BPT trên trục số

IV RÚT KINH NGHIỆM

…… ………

Trang 8

………

………

………

Ngày đăng: 07/02/2015, 19:00

Xem thêm

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w