Möc löc
7.1 H m sè v giîi h¤n 20
7.2 ¤o h m v vi ph¥n 20
7.3 H m sè nhi·u bi¸n 20
7.3.1 20
7.3.2 20
7.4 T½ch ph¥n 23
7.5 Ph÷ìng tr¼nh vi ph¥n 23
Trang 27.5.1 23
7.5.2 23
7.5.3 23
7.5.4 23
7.6 Ph÷ìng tr¼nh sai ph¥n 23
Trang 3Ch֓ng 1
H m sè v giîi h¤n
B i tªp 1.1 T¼m mi·n x¡c ành cõa c¡c h m sè sau: a)
px− | x | b)
y = lg(√
x − 4 −√
6 − x) c)
y =
r x
2 − x −√sinx
B i tªp 1.2 T¼m mi·n gi¡ trà cõa c¡c h m sè sau: a)
y = −xp16 − x2
b)
y = x
2 + 2x + 1
x2 + 4x + 3 c)
y = lg(1 − 2cosx)
B i tªp 1.3 Chùng minh r¬ng:
a)
arcsinx + arccosx = π
Trang 4arctanx + arccotx = π
2, (x > 0) c)
arctanx = arccot1
x d)
arccosp1 − x2 = arcsinx e)
arccos1 − x
2
1 + x2 = 2arctanx
B i tªp 1.4 X²t t½nh ch®n l´ cõa c¡c h m sè sau: a)
y = a
x− 1
ax+ 1 b)
y = lg(x + p1 + x2) c)
y = x + lgx + 3
x − 3
B i tªp 1.5 T¼m h m sè f(x) n¸u bi¸t r¬ng:
a)
f (x + 1) = x2 − 3x + 2 b)
f 1
x = x +p1 + x2, (x > 0) c)
2f (x) + 3f (−x) = 5x
B i tªp 1.6 T¼m h m ng÷ñc cõa c¡c h m sè sau: a)
y = logx2
Trang 5y = ax − b
cx − a c)
y = arctan3x
B i tªp 1.7 T½nh giîi h¤n cõa c¡c d¢y sè:
a)
lim
n→+∞
√ n(√
n + 1 −√
n) b)
lim
n→+∞sin(πpn2 + 1) c)
lim
n→+∞
nsinn!
n2 + 1 d)
lim
n→+∞(1 + x)(1 + x2)(1 + x4) (1 + x2n), (| x |< 1) e)
lim
n−→+∞cosx
2.cos
x
4 cos
x
2n
f)
lim
n−→+∞[(n + 1)α − nα], (0 < α < 1)
B i tªp 1.8 T½nh giîi h¤n cõa c¡c h m sè:
a)
lim
x→0
(1 + x)5 − (1 + 5x)
x2 + x5
b)
lim
x→0
(1 + mx)n − (1 + nx)m
x2 , (m, n ∈ N) c)
lim
x→π
sinmx sinnx
Trang 6lim
x→π3
tan3x − 3tanx cos(x + π6) e)
lim
x→0
n
√
1 + αx −√n
1 + βx x
f)
lim
x→0
n
√
1 + αx√m
1 + βx − 1 x
g)
lim
x→+∞
ln(2 + e3x) ln(3 + e2x) h)
lim
x→+∞
(1 + x)(1 + x2) (1 + xn)
(nx)n+ 1
n+12
i)
lim
x→0
eax − ebx
sinax − sinbx j)
lim
x→0
arcsinx − arctanx
x3
k)
lim
x→0
1 + sinx − cosx
1 + sinnx − cosnx l)
lim
x→0
1 − cosx.cos2x.cos3x
x2
m)
lim
x→a
xa − aa
x − a , (a > 0) n)
lim
x→a
ax− xa
x − a , (a > 0) o)
lim
x→+∞x
π
4 − arctanx + 1
x
Trang 7
lim
x→0
1 − cosx√5
cos2x
x2
q)
lim
x→+∞(ex− x2) r)
lim
x→0
tan(a + x)tan(a − x) − tan2a
x2
s)
lim
x→0
3
p1 + x
3 −p1 +4 x
4
1 −p1 − x
2
t)
lim
x→−1cosπ(x + 1)√3
x + 1 u)
lim
h→0
arctan(x + h) − arctanx
h v)
lim
x→0
p
x2 + x.lnx x)
lim
x→−1(x + 1)ln 1 + 1
x
y)
lim
x→0
lncosax lncosbx z)
lim
x→0
ex2 − (cosx)
√ 2
x2
B i tªp 1.9 T½nh giîi h¤n cõa c¡c h m sè:
a)
lim
x→0
1 + tanx
1 + sinx
1
sin3x
b)
lim
2ex+1x − 1
x2+1 x
Trang 8lim
x→π4(tanx)tan2x d)
lim
x→0
ax− xlna
bx− xlnb
x21
e)
lim
x→+∞
sin1
x + cos
1 x
x
f)
lim
x→0
1 + x2x
1 + x3x
1
x2
g)
lim
x→0
ln(x + 1)
x
lnx
h)
lim
x→0x1xlnx
B i tªp 1.10 X²t t½nh li¶n töc cõa c¡c h m sè:
a)
f (x) =
|sinx|
x n¸u x 6= 0,
m n¸u x = 0 b)
f (x) =
cos2 1x n¸u x 6= 0,
m n¸u x = 0 c)
f (x) = lim
n→+∞
ln en + xn
n , (x > 0)
B i tªp 1.11