1. Trang chủ
  2. » Công Nghệ Thông Tin

Biểu diễn tri thức nhờ logic vị từ bậc một

69 414 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 69
Dung lượng 654,86 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tài liệu này dành cho sinh viên, giáo viên khối ngành công nghệ thông tin tham khảo và có những bài học bổ ích hơn, bổ trợ cho việc tìm kiếm tài liệu, giáo án, giáo trình, bài giảng các môn học khối ngành công nghệ thông tin

Trang 3

Limitations of Propositional Logic 2

\ Can't directly talk about properties of individuals

or relations between individuals

u E.g., how to represent the fact that John is tall?

\ We have no way to conclude that John is good at

Trang 4

Predicate Logic Overview

\ Extensions and Variations

\ Proof in Predicate Logic

\ Important Concepts and Terms

Trang 5

Delimiters

, ( )

Delimiters , ( )

Wff

P∧ Q → R

Wff P∧ Q → R

Trang 8

\ Constants are used to name existing objects:

u The interpretation identifies the object in the real world

u No constant can name more than one object

u An object can have more than one name or no name at all

Trang 9

BNF Grammar Predicate Logic

<Sentence> → <AtomicSentence>

| (<Sentence> <Connective> <Sentence>)

| <Quantifier> <Variable>, <Sentence>

<Constant> → a, b, c, max, carl, jim, jack

<Variable> → A, B, C, X1 , X2, COUNTER, POSITION

<Function> → father-of, square-position, sqrt, cosine

<Predicate> → P, Q, LARGER, BETWEEN, YOUNGER-THAN

Ambiguities are resolved through precedence or parentheses

Trang 10

First Order Predicate Logics Syntax

term ::= variable

| function_symbol_of_arity_n(t1, …, tn) n>0

| function_symbol_of_arity_0 constantatom ::= predicate_symbol_of_arity_n(t1, …, tn) n>0

| predicate_symbol_of_arity_0 constantliteral ::= atom positive literal

| ¬ atom negative literalwff ::= atom well formed formula (sentence)

| (∀ variable wff) universal formula

| (∃ variable wff) existential formula

Trang 12

Function Symbols

\ Function symbols

u function_name(arg1, arg2, …, argn)

u Identifies the object referred to by a tuple of objects

u May be defined implicitly through other functions, or explicitly

through tables

\ Function names begin with a lowercase letter or are

expressed with a symbol

u F = {f, g, h, …} = F0 ∪ F1 ∪ F2 ∪ …

\ Function arities:

u F0: function symbols of arity 0 (constants): a, b, max, jim

u F1: function symbols of arity 1 (one argument)

u F2: function symbols of arity 2 (two arguments)

Trang 13

Functions Examples

\ A function is used to express complex names

u password(claire) Claire’s password

\ A function may be nested

u Max’s age’s double double(age(max))

u father(mother(max)) Max’s mother’s father

u starship(son(dr_crusher)) Dr_Crusher’s son’s starship

\ A function is never a predicate

u Can’t nest predicates TALL(TALL(max))

\ Function symbols of arity >1

u youngestChild(max, ann) Max and Ann’s youngest child

\ A predicate forms a sentence,

while a function names an individual

Trang 14

\ Ví d các hàm sau đây đ m sau đây đ u là các h ng :

u successor(X, Y), weight(b), successor(b, wight(Z))

\ Nh ng các hàm sau đây không ph m sau đây không ph i là h ng :

u P(X, blue) vì P là v t

u weight (P(b))

vì P(b) không ph i là h ng (v t không làm đ m đ i cho hàm)

Trang 15

Predicates

\ Predicate symbols :

u PREDICATE(arg1, arg2, …, argn)

u A (determinate) property possessed by an object: Shape, Size

u A (determinate) relationship among objects:

Shape relationship, size relationship, positional relationship…

u The number of arguments is called the predicate’s arity

u The order of the arguments is important

\ Predicates have names beginning with an uppercase letter

or are represented by an operator symbol

u P = P0 ∪ P1 ∪ P2 ∪ …

\ Predicate arities:

P0: predicate symbols of arity 0 (constants: proposition) : P, Q, R, …

P1: predicate symbols of arity 1 (one argument)

P2: predicate symbols of arity 2 (two arguments)

Trang 16

\ Ví d các v t sau đây l sau đây l à các nguyên t :

u P(X, blue), EMPTY, BETWEEN(table, X, sill(window))

\ Còn :

u successor (X, Y, sill (window)

không ph i nguyên t , mà là các hàm

Trang 17

Atomic Sentences

\ A atomic sentence:

u Expresses a claim that is either true or false

u Formed by a single predicate followed by one or more arguments

Trang 20

Well-formed Formula (wff)

\ Any atomic sentence is a wff

\ If A are B are wffs then so are

Trang 21

Equality

\ Equality indicates that two terms refer to the same object

=(A, B)

u A and B are identical

u Usually, written in infix form A = B

u The equality symbol “=“ is an (in-fix) shorthand

u FATHER(jane) = jim, or =(FATHER(jane), jim)

u E.g Jim is Jane’s and John’s father

\ Equality by reference and equality by value

u Sometimes the distinction between referring to the same object and referring to two objects that are identical (indistinguishable) can be important

\ E ≠ E E is not identical to iteself

Trang 22

m t nguyên t hay có d ng (¬G), v i G là m t nguyên t

u Trong m t CTC, tr c ho c sau các ký t n i, ký t phân

cách, các h ng, các bi n, các hàm, các v t , ng i ta có th

đ t tùy ý các d u cách (space hay blank)

Trang 23

u Cu Tý quê Hà T nh : QUÊ(cutý, hàt nh), QUÊ(X, Y)

u Cu Tý xa quê Hà T nh : XAQUÊ(cutý, hàt nh), XAQUÊ(X, Y)

Trang 24

Predicate Logics: some terminology

\ There is a predicate logic for each basis B=(F, P)

of function and predicate symbols

\ Terms formed on basis B are called B-terms:

the set of all B-terms is denoted TB

\ Formulas formed on basis B are called B-formulas:

the set of all B-formulas is denoted WFFB

\ Formulas with all variables bound to a quantifier

are called closed formulas

\ Formulas with no quantifier

are called quantifier free formulas

\ Formulas with no quantifier and no variable

are called ground formulas

Trang 25

\ T nay ta quy c r ng, trong m t CTC :

u M t bi n đ n đ c l ng t hóa s xu t hi n ngay sau ∃ hay ∀

u Ph m vi l ng t hóa c a bi n k t v trí xu t hi n tr đi đi

Trang 26

M t s nh n xét 2

\ Tri th c di n t theo ngôn ng t nhiên hay toán h c

không ph i luôn luôn d dàng chuy n đ n đ i thành các CTC trong lôgic v t b c m t

\ Ch ng h n, đ đ di n t r ng :

«N u hai v t y chang nhau thì chúng có cùng tính ch t»,

ng i ta có th vi t :

(∀P) (∀X) (∀Y) (EQUAL(X, Y) → (P(X) ↔ P(Y)))

\ Nh ng bi u th c trên không ph i là logic v t b c m t

vì có l ng t ∀ áp d ng cho m t ký t v t là P

\ Trong lôgic v t b c m t, s ki n trên đ n trên đ c vi t :

(∀X) (∀Y) (SAME_P(X, Y) → (P(X) ↔ P(Y))), ho c

(∀X) (∀Y) (SAME_P(X, Y) → (HAVE(X, p) ↔ HAVE (Y, p)))

Trang 27

Example: Family Relationships

\ Objects: people

\ Properties: gender, …

u Expressed as unary predicates:

MALE(X), FEMALE(Y) ho c SEX(X, male), SEX(Y, female)

\ Relations: parenthood, brotherhood, marriage

u Expressed through binary predicates

PARENT(X, Y), BROTHER(X, Y), …

\ Functions: motherhood, fatherhood

u Because every person has exactly one mother and one father:

mother(X), father(Y)

u There may also be a relation

mother-of(X, Y), father-of(X, Y)

Trang 28

Atomic Sentences Translation

Trang 29

Examples Atomic Sentences

FATHER(jack, john), MOTHER(jill, john), SISTER(jane, john)

PARENTS(jack, jill, john, jane)

PARENTS(jack, jill, john, jane) ∧ MARRIED(jack, jill)

PARENTS(jack, jill, john, jane) → MARRIED(jack, jill)

OLDER-THAN(jane, john) ∨ OLDER-THAN(john, jane)

OLDER(father-of(john), 30) ∨ OLDER (mother-of(john), 20)

Trang 31

\ The universal quantifier, represented by the symbol ∀

means “for every” or “for all”

\ The existential quantifier, represented by the symbol ∃

means “there exists”

\ Limitations of predicate logic – most quantifier

Trang 32

Universal Quantifiers ∀ (for all)

Trang 33

Usage of Universal Qualification

\ Universal quantification is frequently used to make

statements like:

u “all humans are mortal”

u “all cats are mammals”

u “all birds can fly” …

\ This can be expressed through sentences like

Trang 34

Existential Quantifier ∃ (there exists)

\ ∃X P(x) states that

u a predicate P holds for some objects in the universe

u The sentence is true if and only if there is at least one true

individual sentence where the variable X is replaced by the

individual objects it can stand for

Trang 35

Usage of Existential Quantification

\ Existential quantification is used to make statements like:

u “some humans are computer scientists”

u “john has a sister who is a computer scientist”

u “some birds can’t fly” …

\ This can be expressed through sentences like

Trang 36

Multiple Quantifiers

\ More complex sentences can be formulated by multiple

variables and by nesting quantifiers

u The order of quantification is important

u Variables must be introduced by quantifiers, and belong to the

innermost quantifier that mention them

\ Examples

∀X, ∀Y PARENT(X, Y) → CHILD(Y, X)

∀X HUMAN(X) ∧ ∃Y MOTHER(Y, X) ⇒ ∀X ∃Y HUMAN(X) ∧ MOTHER(Y, X)

∀X HUMAN(X) ∧ ∃Y LOVES(X, Y) ⇒ ∀X ∃Y HUMAN(X) ∧ LOVES(X, Y)

∃X HUMAN(X) ∧ ∀Y LOVES(X, Y) ⇒ ∀X ∀Y HUMAN(X) ∧ LOVES(X, Y)

∃X HUMAN(X) ∧ ∀Y LOVES(Y, X) ⇒ ∃X ∀Y HUMAN(X) ∧ LOVES(Y, X)

\ They can translate to the form:

V: Variable

Trang 37

\ All statements made with one quantifier can be converted into equivalent statements with the other quantifier by

using negation

∀ is a conjunction over all objects under discourse

∃ is a disjunction over all objects under discourse

\ De Morgan’s rules apply to quantified sentences

\ Strictly speaking, only one quantifier is necessary

u Using both is more convenient

Trang 38

Family Relationships

\ One’s mother is one’s sibling’s mother

∀M, C, D MOTHER(M, C) ∧ SIBLING(C, D) → MOTHER(M, D)

\ Brothers are siblings

∀X, Y BROTHER(X, Y) → SIBLING(X, Y)

\ Sibling is transitive

∀X, Y, Z SIBLING(X, Y) ∧ SIBLING(Y, Z) → SIBLING(X, Z)

\ One’s mother is one’s sibling’s mother

∀M, C MOTHER(M, C) ∧ SIBLING(C, D) → MOTHER(M, D)

\ A first cousin is a child of a parent’s sibling

Trang 39

¬(X=Y) ∧ ∃P PARENT(P, X) ∧ PARENT(P, Y)

Ng i này là m c a ng i kia kh m t ng i là ph n và là thân sinh c a ng i kia

Ng i này là m c a ng i kia kh m t ng i là ph n và là thân sinh c a ng i kia

Ng i này là ch ng c a ng i kia kh ng i này là đàn ông và ng i kia là v c a ng i này

Ng i này là ch ng c a ng i kia kh ng i này là đ đ àn ông và ng i kia là v c a ng i này

Trang 40

Translating English to FOL

\ Every gardener likes the sun

∀X GARDENER(X) → LIKES(X, sun)

\ You can fool some of the people all of the time

∃X ∀T (PERSON(X) ∧ TIME(T)) → CAN-FOOL(X, T)

\ You can fool all of the people some of the time

∀X ∃T (PERSON(X) ∧ TIME(T) → CAN-FOOL(X, T)

\ All purple mushrooms are poisonous

∀X (MUSHROOM(X) ∧ PURPLE(X)) → POISONOUS(X)

\ No purple mushroom is poisonous

¬(∃X) PURPLE(X) ∧ MUSHROOM(X) ∧ POISONOUS(X)

or, equivalently,

(∀X) (MUSHROOM(X) ∧ PURPLE(X)) → ¬POISONOUS(X)

Trang 41

Translating English to FOL…

\ There are exactly two purple mushrooms

(∃X)(∃Y) MUSHROOM(X) ∧ PURPLE(X) ∧ MUSHROOM(Y) ∧ PURPLE(Y)

∧ ¬(X=Y) ∧ (∀Z) (MUSHROOM(Z) ∧ PURPLE(Z))

another starting with X and ending with Y

(∀X)(∀Y) ABOVE(X, Y) ↔ (ON(X, Y) ∨ (∃Z) (ON(X, Z) ∧ ABOVE(Z, Y)))

Trang 42

Colonel West Example

\ Assume:

u It is a crime for an American to sell weapons to a hostile nation.The country Nono, an enemy of America, has some missiles, and all its missiles were sold to it by Colonel West, who is an American

u Constants: nono, america, west

u Predicates: CRIMINAL, AMERICAN, WEAPON, HOSTILE, NATION, ENEMY, MISSILE, OWNS, SELLS

\ Then

u It is a crime for an American to sell weapons to a hostile nation

⇒ If any american X sells any weapon Y to any hostile nation Z, then that american X is a criminal

∧ HOSTILE(Z) ∧ SELLS(X, Z, Y) → CRIMINAL(X))

Trang 43

Other Translating

\ Nono’s missiles

u Nono has some missiles

u All of Nono’s missiles were sold to it by West

⇒ If X is a missile owned by Nono then West sold X to Nono

\ The other facts

u An enemy of America is hostile

u West is an American

u Nono is an enemy of America

∃ X (MISSILE(X) ∧ OWNS(nono, X))

∀ X ((MISSILE(X) ∧ OWNS(nono, X)) → SELLS(west, nono, X))

∀ X (ENEMY(X, america) → HOSTILE(X))

AMERICAN(west)

NATION(nono) ∧ NATION(america) ∧ ENEMY(nono, america)

Trang 44

Other Examples

\ Love

u There is a girl who is loved by every boy

⇒ There is a girl X and if Y is a boy then Y loves her

u Every boy loves some girl

u For every boy Y there exists a girl X that he loves

\ Socrates Example

u All men are mortal

u Socrates is a man

u Socrates is mortal

∃X (GIRL(X) ∧ ∀Y(BOY(Y) → LOVES(Y,X)))

∀Y(BOY(Y) → ∃X (GIRL(X) ∧ LOVES(Y,X)))

∀X (MAN(X) → MORTAL(X))

MAN(socrates)

MORTAL(socrates)

Trang 45

Curiosity Example

\ Assume:

Jack owns a dog

Every dog owner is an animal lover

No animal lover kills an animal

Either Jack or Curiosity killed the cat

The cat’s name is Tuna

Then

u Constants: jack, curiosity, tuna.

u Predicates: OWNS, DOG, ANIMALLOVER, KILLS, ANIMAL

Trang 46

Curiosity Example

\ Dog owners

u Jack owns a dog

⇒ Some dog is owed by Jack

u Every dog owner is an animal lover

u No animal lover kills an animal

⇒ An animal lover does not kill an animal

⇒ For any animal lover X and any animal Y,

then Y is not killed by X

∃ X (DOG(X) ∧ OWNS(jack, X))

∀ X ((∃ Y (DOG(Y) ∧ OWNS(X,Y))) → ANIMALLOVER(X))

∀ X, Y ((ANIMALLOVER(X) ∧ ANIMAL(Y)) → ¬KILLS(X,Y))

Trang 47

Curiosity Example

u The cat’s name is Tuna

u Either Jack or Curiosity killed the cat

u All cats are animals

CAT(tuna)

KILLS(jack, tuna) ∨ KILLS(curiosity, tuna)

∀X CAT(X) → ANIMAL(X)

Trang 49

∀x : ROMAN(X) → LOYALTO(X, caesar) ∨ HATE(X, caesar)

\ Tuy nhiên khi s d ng v i ngh a ho c có lo i tr , có th vi t l i :

∀x : ROMAN(X) → ((LOYALTO(X, caesar) ∧ HATE(X, caesar)) ∧

(¬LOYALTO(X, caesar) ∧ HATE(X, caesar)))

Trang 50

Bi u di n wff’s trong lôgic v t

\ M i ng i đ i đ u trung thành v i m t ng i nào đ o đ ó

∀X, ∃Y LOYALTO(X, Y) ho c ∃Y, ∀X LOYALTO(X, Y)

\ Nhân dân ch mu n gi t nh ng k c m quy n

mà h không trung thành

∀X, ∀Y PERSON(X) ∧ RULER(Y) ∧ TRYASSASSINATE(X, Y) →

¬LOYALTO(X, Y)

M nh đnh đ này t ra m p m (ambiguous) Có ph i ch nh ng k c m

quy n mà nhân dân mu n gi t là nh ng k h không trung thành (theo

nh ng k c m quy n mà h không trung thành ?

\ Marcus mu n gi t Ceresar

u TRYASSASSINATE(marcus, caesar)

\ Câu h i : Marcus có trung thành v i Caesar không ?

Trang 51

vì núi l a phun vào n m 79 A.D.

u Không có ng i nào (không ai) s ng nhi u h n 150 tu i

Trang 52

\ Marcus là m t ng i

MAN(marcus)

\ Marcus là ng i Pompeii

POMPEIAN (marcus)

\ Marcus sinh n m 40 trong công nguyên

(A.D.: Anno Domini)

BORN(marcus, 40)

\ M i ng i đ i đ u (ai c ng ph i) ch t

∀X MAN(X) Ø MORTAL(X)

\ T t c m i ng i dân Pompeii đ i dân Pompeii đ u b ch t

vì núi l a phun vào n m 79 A.D.

∀X ERUPTED(vocalno, 79) ∧ POMPEIAN(X) Ø DIED(X, 79)

Trang 54

Di n gi i (Interpretation)

\ Cho G là m t CTC, m t di n gi i c a G, ký hi u I, đ đ c xác

đ nh t n m b c sau đây c sau đây :

u Ch n mi n di n gi i (Interpretation Domain) là các t p h p khác r ng, ký hi u D ≠ ∅

Trang 55

H nga z

Hàm b c nf(X1, Xn)

Trang 56

Quan h Translation-Interpretation

Ngôn ng

t nhiên

Ngôn nglôgic v tWFF

Trang 58

Tính giá tr c a CTC theo di n gi i (ti p)

\ N u G có d ng (¬G’) :

u I(G) = T n u I(G’) = F trong D

u I(G) = F n u I(G’) = T trong D

Trang 63

Bi n đ i các CTC : lo i b l ng t ∀ và ∃

\ Standardize Variables

in a single sentence (unless you really meant to)

Eg

\ Move all quantifiers left, but keep them in order!

\ Translation into the form:

Q<V> M<V>

with Q: quantifiers, in order ∀s and then ∃s

M: Matrix: wffs including V, <V>: Variable

Trang 64

Bi n đ i các CTC

\ Skolemize: Eliminate Existential Quantifiers

u Existential quantifiers can be eliminated by the introduction

of a new constant that does not appear elsewhere

Trang 65

Bi n đ i các CTC

\ Skolemize: Drop Existential Quantifiers

quantifiers… Consider

becomes by SUBST{Y|h}:

person to their HEART(f(x))

Trang 68

Xây d ng c s lu t cho HCG

\ S ki n 1 :

u Con mèo mà trèo cây cau

H i th m chú chu t đi đâu vt đi đâu v ng nhà

Chú chu t đi cht đi ch đ đ ng xa

Mua m m, mua mu i v gi cha con mèo

Trang 69

u Con mèo mà trèo cây cau : TREO(X, Y)

u H i th m chú chu t đi đâu vt đi đâu v ng nhà :THAM(X, Y), VANGNHA(X)

u Mua m m, mua mu i v gi cha con mèo

Ngày đăng: 20/10/2014, 07:38

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w