The solution, in the case where the needle length is not greater than the width of the strips, can be used to design a Monte Carlo method for approximating the The problem in more mathem
Trang 1Phương pháp Monte Carlo
Trang 2Vùng đất Monte Carlo - Monaco
Trang 3Monte Carlo Casino
Trang 4 Nửa cuối thế kỷ 19, trên thế giới đã có rất nhiều người sử dụng phương pháp tung cây kim lên mặt bàn rồi đếm số lần nó cắt hai đường thẳng song song để xác định số 𝞹 =3.14
Năm 1899, Rayleigh đã chỉ ra rằng, các “bước đi” ngẫu nhiên 1 chiều không có trở ngại có thể cho ta một nghiệm gần đúng của phương trình
vi phân dạng parabolic
Lịch sử phương pháp
Trang 5 Đầu thế kỷ 20, các cơ sở nghiên cứu thống kể ở Anh đã sử dụng các kỹ thuật liên quan đến
phương pháp Monte Carlo ở dạng đơn giản
In 1908 Student (W.S Gosset) sử dụng phương pháp thử đúng sai (sampling) để tìm ra hàm
phân bố của các hệ số tương quan (correlation coefficient)
Cùng năm, Student đã sử dụng phương pháp trên để tìm ra hàm phân bố t-distribution, sử
dụng một vài phân tích giải tích đơn giản và
chưa hoàn chỉnh
Lịch sử phương pháp
Trang 6 Phương pháp Monte Carlo thực sử được sử dụng như một công cụ nghiên cứu bắt đầu từ một dự án chế tạo bom nguyên tử trong thế chiến thứ II (dự án Manhattan)
Xuất phát từ yêu cầu cần mô phỏng các bài toán có liên quan đến sự khuếch tán ngẫu
nhiên của neutron trong các vật liệu
Khoảng năm 1948, Fermi, Metropolis và
Ulam đã thu được gần đúng các giá trị riêng của phương trình Schrodinger bằng phương pháp Monte Carlo
Lịch sử phương pháp
Trang 7Dự án Manhattan
Stanislaw Ulam phát minh ra một kỹ thuật để giải một vài dạnh phương trình vi phân sử dụng phương pháp xác xuất Điều thú vị ở chỗ, phương pháp này dự trên chò trơi bài trong casino
Cái tên “Monte Carlo” được đặt bởi Nicholas Metropolis (cùng tham gia dự án Manhattan)
Dự án Manhattan là dự án quy tụ các nhà bác học hàng đầu của Mỹ để chế tạo bom nguyên tử cho quân đồng minh Einstein cũng có liên quan gián tiếp trong dự án này
* Tham khảo: “Niềm vui khám phá” - NXB Trẻ
Trang 8 Khoảng năm 1970, các lý thuyết mô phỏng
Monte Carlo nở rộ và được phát triển mạnh mẽ cho đến ngày nay
Lịch sử phương pháp
Trang 9Các khái niệm xác xuất
Trang 10Giới thiệu
Phương pháp Monte Carlo (MC) là các kỹ thuật sử dụng số ngẫu nhiên
MC là phương pháp rất tổng quát và có tính chính xác RẤT CAO.
MC được ứng dụng nhiều bài toán: từ Vật
lý, Hoá học đến Kinh tế, Tài chính
Trang 11Ví dụ
Tính số π
Trang 12(x, y)
Khởi tạo: x = (random#)
Khởi tạo: y = (random#)
Tính: khoang_cach = sqrt (x^2 + y^2)
Điều kiện: if khoang_cach (less.than.or.equal.to) 1.0
Thực hiện: hits = hits + 1.0
Tính số π
Trang 1340 Approximation of a function
routines to report the current time in an integer form, and we can use this integer
to construct an initial seed (Anderson, 1990) For example, most computers can
produce 0 ≤ t1 ≤ 59 for the second of the minute, 0 ≤ t2 ≤ 59 for the minute of
the hour, 0 ≤ t3 ≤ 23 for the hour of the day, 1 ≤ t4 ≤ 31 for the day of the month,
1 ≤ t5 ≤ 12 for the month of the year, and t6 for the current year in common era.Then we can choose
is an implementation of such an evaluation of π in Java
// An example of evaluating pi by throwing a dart into a // unit square with 0<x<1 and 0<y<1.
static int seed;
public static void main(String argv[]) { // Initiate the seed from the current time
GregorianCalendar t = new GregorianCalendar();
if ((seed%2) == 0) seed = seed-1;
// Throw the dart into the unit square int ic = 0;
for (int i=0; i<n; ++i) { double x = ranf();
double y = ranf();
if ((x*x+y*y) < 1) ic++;
} System.out.println("Estimated pi: " + (4.0*ic/n));
} public static double ranf() { }
}
Chương trình tính số Pi
Trang 1440 Approximation of a function
routines to report the current time in an integer form, and we can use this integer
to construct an initial seed (Anderson, 1990) For example, most computers can
produce 0 ≤ t1 ≤ 59 for the second of the minute, 0 ≤ t2 ≤ 59 for the minute of
the hour, 0 ≤ t3 ≤ 23 for the hour of the day, 1 ≤ t4 ≤ 31 for the day of the month,
1 ≤ t5 ≤ 12 for the month of the year, and t6 for the current year in common era Then we can choose
is an implementation of such an evaluation of π in Java.
// An example of evaluating pi by throwing a dart into a // unit square with 0<x<1 and 0<y<1.
static int seed;
public static void main(String argv[]) { // Initiate the seed from the current time
GregorianCalendar t = new GregorianCalendar();
if ((seed%2) == 0) seed = seed-1;
// Throw the dart into the unit square
} public static double ranf() { }
}
Chương trình tính số Pi
Trang 15Georges Louis Leclerc Comte de Buffon (07.09.1707.-16.04.1788.)
Bài toán cây kim Buffon
Trang 16Giả sử ta thả rơi ngẫu nhiên một cây kim chiều dài l vào giữa của
hai đường thẳng // cách nhau một khoảng cách là t
Bài toán cây kim Buffon
The a needle lies across a line, while the b needle does not.
Buffon's needle
From Wikipedia, the free encyclopedia
In mathematics, Buffon's needle problem is a question first posed in
the 18th century by Georges-Louis Leclerc, Comte de Buffon:
Suppose we have a floor made of parallel strips of wood, each the
same width, and we drop a needle onto the floor What is the
probability that the needle will lie across a line between two
strips?
Buffon's needle was the earliest problem in geometric probability to be
solved; it can be solved using integral geometry The solution, in the
case where the needle length is not greater than the width of the strips,
can be used to design a Monte Carlo method for approximating the
The problem in more mathematical terms is: Given a needle of length dropped on a plane ruled with parallel
lines t units apart, what is the probability that the needle will cross a line?
Let x be the distance from the center of the needle to the closest line, let θ be the acute angle between the needle
and the lines
The uniform probability density function of x between 0 and t /2 is
The uniform probability density function of θ between 0 and π/2 is
Gọi x là khoảng cách từ tâm cây kim đến đường thẳng gần nhất Do
đó, hàm phân bố mật độ xác xuất của x trong khoảng từ 0 đến t/2 như sau:
The a needle lies across a line, while the b needle does not.
Buffon's needle
From Wikipedia, the free encyclopedia
In mathematics, Buffon's needle problem is a question first posed in
the 18th century by Georges-Louis Leclerc, Comte de Buffon:
Suppose we have a floor made of parallel strips of wood, each the same width, and we drop a needle onto the floor What is the
probability that the needle will lie across a line between two strips?
Buffon's needle was the earliest problem in geometric probability to be solved; it can be solved using integral geometry The solution, in the case where the needle length is not greater than the width of the strips, can be used to design a Monte Carlo method for approximating the
The problem in more mathematical terms is: Given a needle of length dropped on a plane ruled with parallel
lines t units apart, what is the probability that the needle will cross a line?
Let x be the distance from the center of the needle to the closest line, let θ be the acute angle between the needle
and the lines.
The uniform probability density function of x between 0 and t /2 is
The uniform probability density function of θ between 0 and π/2 is
Ngoài khoảng
Trang 17Bài toán cây kim Buffon
The a needle lies across a line, while the b needle does not.
Buffon's needle
From Wikipedia, the free encyclopedia
In mathematics, Buffon's needle problem is a question first posed in
the 18th century by Georges-Louis Leclerc, Comte de Buffon:
Suppose we have a floor made of parallel strips of wood, each the
same width, and we drop a needle onto the floor What is the
probability that the needle will lie across a line between two
strips?
Buffon's needle was the earliest problem in geometric probability to be
solved; it can be solved using integral geometry The solution, in the
case where the needle length is not greater than the width of the strips,
can be used to design a Monte Carlo method for approximating the
The problem in more mathematical terms is: Given a needle of length dropped on a plane ruled with parallel
lines t units apart, what is the probability that the needle will cross a line?
Let x be the distance from the center of the needle to the closest line, let θ be the acute angle between the needle
and the lines
The uniform probability density function of x between 0 and t /2 is
The uniform probability density function of θ between 0 and π/2 is
Giả sử ta thả rơi ngẫu nhiên một cây kim chiều dài l vào giữa của
hai đường thẳng // cách nhau một khoảng cách là t
This GIF image describes the solution
of Buffon's Needle Problem for the
"short needle" case
The two random variables, x and θ, are independent, so the joint probability density function is the product
The needle crosses a line if
Now there are two cases.
Case 1: Short needle
Case 2: Long needle
Suppose In this case, integrating the joint probability density function, we obtain:
where is the minimum between and
Thus, performing the above integration, we see that, when , the probability that the needle will cross a line is
or
Ngoài khoảng
Gọi 𝜃 là góc nhọn giữa cây kim và hai đường thẳng // Hàm phân bố xác xuất đồng nhất của góc 𝜃 trong khoảng từ 0 đến 𝞹/2 là:
Trang 18Bài toán cây kim Buffon
The a needle lies across a line, while the b needle does not.
Buffon's needle
From Wikipedia, the free encyclopedia
In mathematics, Buffon's needle problem is a question first posed in
the 18th century by Georges-Louis Leclerc, Comte de Buffon:
Suppose we have a floor made of parallel strips of wood, each the
same width, and we drop a needle onto the floor What is the
probability that the needle will lie across a line between two
strips?
Buffon's needle was the earliest problem in geometric probability to be
solved; it can be solved using integral geometry The solution, in the
case where the needle length is not greater than the width of the strips,
can be used to design a Monte Carlo method for approximating the
The problem in more mathematical terms is: Given a needle of length dropped on a plane ruled with parallel
lines t units apart, what is the probability that the needle will cross a line?
Let x be the distance from the center of the needle to the closest line, let θ be the acute angle between the needle
and the lines
The uniform probability density function of x between 0 and t /2 is
The uniform probability density function of θ between 0 and π/2 is
Giả sử ta thả rơi ngẫu nhiên một cây kim chiều dài l vào giữa của
hai đường thẳng // cách nhau một khoảng cách là t
This GIF image describes the solution
of Buffon's Needle Problem for the
"short needle" case
The two random variables, x and θ, are independent, so the joint probability density function is the product
The needle crosses a line if
Now there are two cases.
Case 1: Short needle
Case 2: Long needle
Suppose In this case, integrating the joint probability density function, we obtain:
where is the minimum between and
Thus, performing the above integration, we see that, when , the probability that the needle will cross a line is
or
Ngoài khoảng
Vì hai biến cố x và 𝜃 độc lập nên hàm phân bố mật độ xác xuất của cây kim sẽ cắt đường thẳng sẽ là tích của hai hàm phân bố nói trên:
Trang 19Bài toán cây kim Buffon
This GIF image describes the solution
of Buffon's Needle Problem for the
"short needle" case
The two random variables, x and θ, are independent, so the joint probability density function is the product
The needle crosses a line if
Now there are two cases.
Case 1: Short needle
Case 2: Long needle
Suppose In this case, integrating the joint probability density function, we obtain:
where is the minimum between and
Thus, performing the above integration, we see that, when , the probability that the needle will cross a line is
or
The a needle lies across a line, while the b needle does not.
Buffon's needle
From Wikipedia, the free encyclopedia
In mathematics, Buffon's needle problem is a question first posed in
the 18th century by Georges-Louis Leclerc, Comte de Buffon:
Suppose we have a floor made of parallel strips of wood, each the
same width, and we drop a needle onto the floor What is the
probability that the needle will lie across a line between two
strips?
Buffon's needle was the earliest problem in geometric probability to be
solved; it can be solved using integral geometry The solution, in the
case where the needle length is not greater than the width of the strips,
can be used to design a Monte Carlo method for approximating the
The problem in more mathematical terms is: Given a needle of length dropped on a plane ruled with parallel
lines t units apart, what is the probability that the needle will cross a line?
Let x be the distance from the center of the needle to the closest line, let θ be the acute angle between the needle
and the lines
The uniform probability density function of x between 0 and t /2 is
The uniform probability density function of θ between 0 and π/2 is
Giả sử ta thả rơi ngẫu nhiên một cây kim chiều dài l vào giữa của
hai đường thẳng // cách nhau một khoảng cách là t
Điều kiện để cây kim cắt một trong hai đường thẳng là:
Trang 20Bài toán cây kim Buffon
This GIF image describes the solution
of Buffon's Needle Problem for the
"short needle" case
The two random variables, x and θ, are independent, so the joint probability density function is the product
The needle crosses a line if
Now there are two cases
Case 1: Short needle
Case 2: Long needle
Suppose In this case, integrating the joint probability densityfunction, we obtain:
Thus, performing the above integration, we see that, when , the probability that the needle will cross a lineis
or
The a needle lies across a line, while the b needle does not.
Buffon's needle
From Wikipedia, the free encyclopedia
In mathematics, Buffon's needle problem is a question first posed in
the 18th century by Georges-Louis Leclerc, Comte de Buffon:
Suppose we have a floor made of parallel strips of wood, each the
same width, and we drop a needle onto the floor What is the
probability that the needle will lie across a line between two
strips?
Buffon's needle was the earliest problem in geometric probability to be
solved; it can be solved using integral geometry The solution, in the
case where the needle length is not greater than the width of the strips,
can be used to design a Monte Carlo method for approximating the
The problem in more mathematical terms is: Given a needle of length dropped on a plane ruled with parallel
lines t units apart, what is the probability that the needle will cross a line?
Let x be the distance from the center of the needle to the closest line, let θ be the acute angle between the needle
and the lines
The uniform probability density function of x between 0 and t /2 is
The uniform probability density function of θ between 0 and π/2 is
Giả sử ta thả rơi ngẫu nhiên một cây kim chiều dài l vào giữa của
hai đường thẳng // cách nhau một khoảng cách là t
Do đó, xác xuất để cây kim cắt hai đường thẳng sẽ là tích phân sau
Với giả thuyết là l ≤ t
Trang 21Nếu chúng ta thả cây kim N lần và tính số lần nó cắt hai cạnh R ta được:
P = R / N
Từ đó suy ra:
𝞹 = 2 l N / Rt
Bài toán cây kim Buffon
The a needle lies across a line, while the b needle does not.
Buffon's needle
From Wikipedia, the free encyclopedia
In mathematics, Buffon's needle problem is a question first posed in
the 18th century by Georges-Louis Leclerc, Comte de Buffon:
Suppose we have a floor made of parallel strips of wood, each the
same width, and we drop a needle onto the floor What is the
probability that the needle will lie across a line between two
strips?
Buffon's needle was the earliest problem in geometric probability to be
solved; it can be solved using integral geometry The solution, in the
case where the needle length is not greater than the width of the strips,
can be used to design a Monte Carlo method for approximating the
The problem in more mathematical terms is: Given a needle of length dropped on a plane ruled with parallel
lines t units apart, what is the probability that the needle will cross a line?
Let x be the distance from the center of the needle to the closest line, let θ be the acute angle between the needle
and the lines
The uniform probability density function of x between 0 and t /2 is
The uniform probability density function of θ between 0 and π/2 is
Giả sử ta thả rơi ngẫu nhiên một cây kim chiều dài l vào giữa của
hai đường thẳng // cách nhau một khoảng cách là t
Trang 22Bài toán cây kim Buffon
Trang 23Thả 1 lần
Trang 24Thả 11 lần
Trang 25Thả 111 lần
Trang 26Thả 1111 lần
Trang 27Chương trình