liˆen thˆong ma.nh.. khˆong c´o ma.ch... liˆen thˆong ma.nh... tˆo`n ta.i chu tr`ınh Hamilton.. tˆo`n ta.i ma.ch Hamilton... Nh˜u.ng h`ınh nhu... C´ac vector h`ang phu... thˆong qua ma˙’
Trang 1Mu.c lu.c
1.1 D- i.nh ngh˜ıa v`a c´ac kh´ai niˆe.m 9
1.1.1 D- ˆo` thi c´o hu.´o.ng 9
1.1.2 D- ˆo` thi v`a ´anh xa d¯a tri 10
1.1.3 D- ˆo` thi vˆo hu.´o.ng 10
1.1.4 C´ac d¯i.nh ngh˜ıa ch´ınh 11
1.2 Ma trˆa.n biˆe˙’u diˆe˜n d¯ˆo` thi 13
1.2.1 Ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-cung 13
1.2.2 Ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-ca.nh 15
1.2.3 Ma trˆa.n kˆe` hay ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-d¯ı˙’nh 17
1.2.4 C´ac biˆe˙’u diˆe˜n cu˙’a d¯ˆo` thi 18
1.3 T´ınh liˆen thˆong 23
1.3.1 Dˆay chuyˆe` n v`a chu tr`ınh 23
1.3.2 D- u.`o.ng d¯i v`a ma.ch 24
1.3.3 T´ınh liˆen thˆong 24
Trang 21.3.4 Cˆa` u, k−liˆen thˆong 28
1.3.5 D- ˆo` thi liˆen thˆong ma.nh 31
1.4 Pha.m vi v`a liˆen thˆong ma.nh 33
1.4.1 Ma trˆa.n pha.m vi 33
1.4.2 T`ım c´ac th`anh phˆa` n liˆen thˆong ma.nh 36
1.4.3 Co so.˙’ 39
1.5 D- ˇa˙’ng cˆa´u cu˙’a c´ac d¯ˆo` thi 41
1.5.1 1−d¯ˇa˙’ng cˆa´u 42
1.5.2 2−d¯ˇa˙’ng cˆa´u 43
1.6 C´ac d¯ˆo` thi d¯ˇa.c biˆe.t 46
1.6.1 D- ˆo` thi khˆong c´o ma.ch 46
1.6.2 D- ˆo` thi phˇa˙’ng 46
2 C´ac sˆo´ co ba˙’n cu˙’a d¯ˆ` thi.o 49 2.1 Chu sˆo´ 49
2.2 Sˇa´c sˆo´ 52
2.2.1 C´ach t`ım sˇa´c sˆo´ 54
2.3 Sˆo´ ˆo˙’n d¯i.nh trong 55
2.4 Sˆo´ ˆo˙’n d¯i.nh ngo`ai 61
2.5 Phu˙’ 65
2.6 Nhˆan cu˙’a d¯ˆo` thi 69
2.6.1 C´ac d¯i.nh l´y vˆe` tˆo`n ta.i v`a duy nhˆa´t 69
2.6.2 Tr`o cho.i Nim 72
Trang 33 C´ac b`ai to´an vˆ` d¯u.`o.ng d¯ie 75
3.1 D- u.`o.ng d¯i gi˜u.a hai d¯ı˙’nh 75
3.1.1 D- u.`o.ng d¯i gi˜u.a hai d¯ı˙’nh 75
3.1.2 D- ˆo` thi liˆen thˆong ma.nh 76
3.2 D- u.`o.ng d¯i ngˇa´n nhˆa´t gi˜u.a hai d¯ı˙’nh 78
3.2.1 Tru.`o.ng ho p ma trˆa.n tro.ng lu.o ng khˆong ˆam 78
3.2.2 Tru.`o.ng ho p ma trˆa.n tro.ng lu.o ng tu`y ´y 82
3.3 D- u.`o.ng d¯i ngˇa´n nhˆa´t gi˜u.a tˆa´t ca˙’ c´ac cˇa.p d¯ı˙’nh 87
3.3.1 Thuˆa.t to´an Hedetniemi (tru.`o.ng ho p ma trˆa.n tro.ng lu.o ng khˆong ˆam) 88 3.3.2 Thuˆa.t to´an Floyd (tru.`o.ng ho p ma trˆa.n tro.ng lu.o ng tu`y ´y) 93
3.4 Ph´at hiˆe.n ma.ch c´o d¯ˆo d`ai ˆam 96
3.4.1 Ma.ch tˆo´i u.u trong d¯ˆo` thi c´o hai tro.ng lu.o ng 96
4 C ˆAY 99 4.1 Mo.˙’ d¯ˆa` u 99
4.2 Cˆay Huffman 101
4.2.1 C´ac bˆo m˜a “tˆo´t” 101
4.2.2 M˜a Huffman 103
4.3 Cˆay bao tr`um 105
4.3.1 Thuˆa.t to´an t`ım kiˆe´m theo chiˆe` u rˆo.ng x´ac d¯i.nh cˆay bao tr`um 107
4.3.2 Thuˆa.t to´an t`ım kiˆe´m theo chiˆe` u sˆau x´ac d¯i.nh cˆay bao tr`um 107
4.3.3 T`ım cˆay bao tr`um du a trˆen hai ma˙’ng tuyˆe´n t´ınh 108
4.3.4 Thuˆa.t to´an t`ım tˆa´t ca˙’ c´ac cˆay bao tr`um 112
4.3.5 Hˆe co so.˙’ cu˙’a c´ac chu tr`ınh d¯ˆo.c lˆa.p 112
Trang 44.4 Cˆay bao tr`um tˆo´i thiˆe˙’u 114
4.4.1 Thuˆa.t to´an Kruskal 116
4.4.2 Thuˆa.t to´an Prim 119
4.4.3 Thuˆa.t to´an Dijkstra-Kevin-Whitney 121
4.5 B`ai to´an Steiner 122
5 B`ai to´an Euler v`a b`ai to´an Hamilton 127 5.1 B`ai to´an Euler 127
5.1.1 Thuˆa.t to´an t`ım dˆay chuyˆe` n Euler 129
5.2 B`ai to´an ngu.`o.i d¯u.a thu Trung Hoa 131
5.3 B`ai to´an Hamilton 135
5.3.1 C´ac d¯iˆe` u kiˆe.n cˆa`n d¯ˆe˙’ tˆo`n ta.i chu tr`ınh Hamilton 138
5.3.2 C´ac d¯iˆe` u kiˆe.n d¯u˙’ vˆe` su tˆo`n ta.i chu tr`ınh Hamilton 139
5.3.3 C´ac d¯iˆe` u kiˆe.n d¯u˙’ vˆe` su tˆo`n ta.i ma.ch Hamilton 142
6 D- ˆo` thi phˇa˙’ng 149 6.1 D- i.nh ngh˜ıa v`a c´ac v´ı du 149
6.2 C´ac biˆe˙’u diˆe˜n kh´ac nhau cu˙’a mˆo.t d¯ˆo` thi phˇa˙’ng 151
6.3 C´ac t´ınh chˆa´t cu˙’a d¯ˆo` thi phˇa˙’ng 154
6.4 Ph´at hiˆe.n t´ınh phˇa˙’ng 157
6.4.1 Kiˆe˙’m tra t´ınh phˇa˙’ng 161
6.5 D- ˆo´i ngˆa˜u h`ınh ho.c 167
6.6 D- ˆo´i ngˆa˜u tˆo˙’ ho p 170
Trang 57.1 Mo.˙’ d¯ˆa` u 173
7.2 B`ai to´an luˆo`ng l´o.n nhˆa´t 174
7.2.1 Thuˆa.t to´an g´an nh˜an d¯ˆe˙’ t`ım luˆo`ng l´o.n nhˆa´t 180
7.2.2 D- ˆo` thi d¯iˆe`u chı˙’nh luˆo`ng 181
7.2.3 Phˆan t´ıch luˆo`ng 182
7.3 C´ac ca˙’i biˆen d¯o.n gia˙’n cu˙’a b`ai to´an luˆo`ng l´o.n nhˆa´t 183
7.3.1 C´ac d¯ˆo` thi c´o nhiˆe`u nguˆo`n v`a nhiˆe`u d¯´ıch 183
7.3.2 C´ac d¯ˆo` thi v´o.i r`ang buˆo.c ta.i c´ac cung v`a d¯ı˙’nh 184
7.3.3 C´ac d¯ˆo` thi c´o cˆa.n trˆen v`a cˆa.n du.´o.i vˆe` luˆo`ng 185
7.4 Luˆo`ng v´o.i chi ph´ı nho˙’ nhˆa´t 186
7.4.1 Thuˆa.t to´an Klein, Busacker, Gowen 186
7.5 Cˇa.p gh´ep 189
7.5.1 C´ac b`ai to´an vˆe` cˇa.p gh´ep 189
7.5.2 Cˇa.p gh´ep l´o.n nhˆa´t trong d¯ˆo` thi hai phˆa`n 192
7.5.3 Cˇa.p gh´ep ho`an ha˙’o trong d¯ˆo` thi hai phˆa`n 193
Trang 7L` o.i n´ oi d¯ˆ ` u a
Trong thu c tˆe´ d¯ˆe˙’ miˆeu ta˙’ mˆo.t sˆo´ t`ınh huˆo´ng ngu.`o.i ta thu.`o.ng biˆe˙’u thi bˇa`ng mˆo.t h`ınh a˙’nhgˆo`m c´ac d¯iˆe˙’m (c´ac d¯ı˙’nh)-biˆe˙’u diˆe˜n c´ac thu c thˆe˙’-v`a v˜e c´ac d¯oa.n thˇa˙’ng nˆo´i cˇa.p c´ac d¯ı˙’nh biˆe˙’u
diˆe˜n mˆo´i quan hˆe gi˜u.a ch´ung Nh˜u.ng h`ınh nhu thˆe´ thu.`o.ng go.i l`a c´ac d¯ˆo` thi Mu.c d¯´ıch cu˙’a
gi´ao tr`ınh n`ay cung cˆa´p nh˜u.ng kiˆe´n th´u.c co ba˙’n d¯ˆe˙’ nghiˆen c´u.u c´ac d¯ˆo` thi C´ac d¯ˆo` thi xuˆa´thiˆe.n trong nhiˆe` u l˜ınh vu c v´o.i c´ac tˆen go.i kh´ac nhau: “cˆa´u tr´uc” trong cˆong tr`ınh xˆay du ng,
“ma.ch” trong d¯iˆe.n tu.˙’, “lu.o c d¯ˆo` quan hˆe.”, “cˆa´u tr´uc truyˆe` n thˆong”, “cˆa´u tr´uc tˆo˙’ ch´u.c”trong x˜a hˆo.i v`a kinh tˆe´, “cˆa´u tr´uc phˆan tu.˙’” trong ho´a ho.c, vˆan vˆan
Do nh˜u.ng ´u.ng du.ng rˆo.ng r˜ai cu˙’a n´o trong nhiˆe` u l˜ınh vu c, c´o rˆa´t nhiˆe`u nghiˆen c´u.uxung quanh l´y thuyˆe´t d¯ˆo` thi trong nh˜u.ng nˇam gˆa`n d¯ˆay; mˆo.t nhˆan tˆo´ chu˙’ yˆe´u g´op phˆa`n th´ucd¯ˆa˙’y su ph´at triˆe˙’n d¯´o l`a xuˆa´t hiˆe.n c´ac m´ay t´ınh l´o.n c´o thˆe˙’ thu c hiˆe.n nhiˆe` u ph´ep to´an v´o.itˆo´c d¯ˆo rˆa´t nhanh Viˆe.c biˆe˙’u diˆe˜n tru c tiˆe´p v`a chi tiˆe´t c´ac hˆe thˆo´ng thu c tˆe´, chˇa˙’ng ha.n c´acma.ng truyˆe` n thˆong, d¯˜a d¯u.a d¯ˆe´n nh˜u.ng d¯ˆo` thi c´o k´ıch thu.´o.c l´o.n v`a viˆe.c phˆan t´ıch th`anhcˆong hˆe thˆo´ng phu thuˆo.c rˆa´t nhiˆe` u v`ao c´ac thuˆa.t to´an “tˆo´t” c˜ung nhu kha˙’ nˇang cu˙’a m´ayt´ınh Theo d¯´o, gi´ao tr`ınh n`ay s˜e tˆa.p trung v`ao viˆe.c ph´at triˆe˙’n v`a tr`ınh b`ay c´ac thuˆa.t to´and¯ˆe˙’ phˆan t´ıch c´ac d¯ˆo` thi
C´ac phu.o.ng ph´ap phˆan t´ıch v`a thiˆe´t kˆe´ c´ac thuˆa.t to´an trong gi´ao tr`ınh cho ph´ep sinhviˆen c´o thˆe˙’ viˆe´t dˆe˜ d`ang c´ac chu.o.ng tr`ınh minh ho.a Gi´ao tr`ınh d¯u.o c biˆen soa.n cho c´ac d¯ˆo´itu.o ng l`a sinh viˆen To´an-Tin v`a Tin ho.c
Gi´ao tr`ınh su.˙’ du.ng ngˆon ng˜u C d¯ˆe˙’ minh ho.a, tuy nhiˆen c´o thˆe˙’ dˆe˜ d`ang chuyˆe˙’n d¯ˆo˙’isang c´ac ngˆon ng˜u kh´ac; v`a do d¯´o, sinh viˆen cˆa` n c´o mˆo.t sˆo´ kiˆe´n th´u.c vˆe` ngˆon ng˜u C Ngo`ai
ra, hˆa` u hˆe´t c´ac chu.o.ng tr`ınh thao t´ac trˆen cˆa´u tr´uc d˜u liˆe.u nhu danh s´ach liˆen kˆe´t, nˆen d¯`oiho˙’i sinh viˆen pha˙’i c´o nh˜u.ng k˜y nˇang lˆa.p tr`ınh tˆo´t
Gi´ao tr`ınh bao gˆo`m ba˙’y chu.o.ng v`a mˆo.t phˆa`n phu lu.c v´o.i nh˜u.ng nˆo.i dung ch´ınh nhu.sau:
• Chu.o.ng th´u nhˆa´t tr`ınh b`ay nh˜u.ng kh´ai niˆe.m cˇan ba˙’n vˆe` d¯ˆo` thi
• Chu.o.ng 2 tr`ınh b`ay nh˜u.ng sˆo´ co ba˙’n cu˙’a d¯ˆo` thi ´Y ngh˜ıa thu c tiˆe˜n cu˙’a c´ac sˆo´ n`ay
Trang 8• Chu.o.ng 3 t`ım hiˆe˙’u b`ai to´an t`ım d¯u.`o.ng d¯i ngˇa´n nhˆa´t.
• Chu.o.ng 4 d¯ˆe` cˆa.p d¯ˆe´n kh´ai niˆe.m vˆe` cˆay ´U.ng du.ng cu˙’a cˆay Huffman trong n´en d˜u.liˆe.u Ngo`ai ra xˆay du ng c´ac thuˆa.t to´an t`ım cˆay bao tr`um nho˙’ nhˆa´t
• B`ai to´an Euler v`a b`ai to´an Hamilton v`a nh˜u.ng mo.˙’ rˆo.ng cu˙’a ch´ung s˜e d¯u.o c n´oi d¯ˆe´n
trong Chu.o.ng 5
• Chu.o.ng 6 nghiˆen c´u.u c´ac t´ınh chˆa´t phˇa˙’ng cu˙’a d¯ˆo` thi.; v`a cuˆo´i c`ung
• Chu.o.ng 7 t`ım hiˆe˙’u c´ac b`ai to´an trˆen ma.ng vˆa.n ta˙’i.
Ngo`ai ra, phˆa` n phu lu.c tr`ınh b`ay c´ac cˆa´u tr´uc d˜u liˆe.u v`a nh˜u.ng thu˙’ tu.c cˆa`n thiˆe´t d¯ˆe˙’d¯o.n gia˙’n ho´a c´ac d¯oa.n chu.o.ng tr`ınh minh ho.a c´ac thuˆa.t to´an d¯u.o c tr`ınh b`ay
Gi´ao tr`ınh d¯u.o c biˆen soa.n lˆa`n d¯ˆa`u tiˆen nˆen khˆong tr´anh kho˙’i kh´a nhiˆe` u thiˆe´u s´ot T´acgia˙’ mong c´o nh˜u.ng d¯´ong g´op t`u ba.n d¯o.c
Tˆoi xin ca˙’m o.n nh˜u.ng gi´up d¯˜o d¯˜a nhˆa.n d¯u.o c t`u nhiˆe` u ngu.`o.i m`a khˆong thˆe˙’ liˆe.t kˆehˆe´t, d¯ˇa.c biˆe.t l`a c´ac ba.n sinh viˆen, trong qu´a tr`ınh biˆen soa.n gi´ao tr`ınh n`ay
D- `a La.t, ng`ay 5 th´ang 3 nˇam 2002
PHA.M Tiˆe´n So.n
Trang 9Chu.o.ng 1
1.1.1 D - ˆo ` thi c´o hu.´o.ng
D - ˆo` thi c´o hu.´o.ng G = (V, E) gˆo`m mˆo.t tˆa.p V c´ac phˆa`n tu.˙’ go.i l`a d¯ı˙’nh (hay n´ut) v`a mˆo.t tˆa.p
E c´ac cung sao cho mˆo˜i cung e ∈ E tu.o.ng ´u.ng v´o.i mˆo.t cˇa.p c´ac d¯ı˙’nh d¯u.o c sˇa´p th´u tu Nˆe´u c´o d¯´ung mˆo.t cung e tu.o.ng ´u.ng c´ac d¯ı˙’nh d¯u.o c sˇa´p th´u tu (a, b), ta s˜e viˆe´t e := (a, b) Ch´ung ta s˜e gia˙’ su.˙’ c´ac d¯ı˙’nh d¯u.o c d¯´anh sˆo´ l`a v1, v2, , v n hay gia˙’n tiˆe.n, 1, 2, , n, trong d¯´o n = #V l`a sˆo´ c´ac d¯ı˙’nh cu˙’a d¯ˆo` thi
Nˆe´u e l`a mˆo.t cung tu.o.ng ´u.ng cˇa.p c´ac d¯ı˙’nh d¯u.o c sˇa´p th´u tu v i v`a v j th`ı d¯ı˙’nh v i go.i l`a
gˆo´c v`a d¯ı˙’nh v j go.i l`a ngo.n; cung e go.i l`a liˆen thuˆo.c hai d¯ı˙’nh v i v`a v j Ch´ung ta s˜e thu.`o.ng k´y hiˆe.u m = #E−sˆo´ ca.nh cu˙’a d¯ˆo` thi G C´ac ca.nh thu.`o.ng d¯u.o c d¯´anh sˆo´ l`a e1, e2, , e m Mˆo.t c´ach h`ınh ho.c, c´ac d¯ı˙’nh d¯u.o c biˆe˙’u diˆe˜n bo.˙’i c´ac d¯iˆe˙’m, v`a e = (v i , v j) d¯u.o c biˆe˙’u
diˆe˜n bo.˙’i mˆo.t cung nˆo´i c´ac d¯iˆe˙’m v i v`a v j
Mˆo.t cung c´o gˆo´c tr`ung v´o.i ngo.n go.i l`a khuyˆen.
Nˆe´u c´o nhiˆe` u ho.n mˆo.t cung v´o.i gˆo´c ta.i v i v`a ngo.n ta.i v j th`ı G go.i l`a d¯a d¯ˆo` thi v`a c´ac cung tu.o.ng ´u.ng go.i l`a song song D - o.n d¯ˆo` thi c´o hu.´o.ng l`a d¯ˆo` thi khˆong khuyˆen trong d¯´o hai d¯ı˙’nh bˆa´t k`y v i v`a v j c´o nhiˆe` u nhˆa´t mˆo.t cung (v i , v j ) Chˇa˙’ng ha.n, d¯ˆo` thi trong H`ınh 1.1 c´o cung e8 l`a khuyˆen; c´ac cung e4 v`a e9 l`a song song do c`ung tu.o.ng ´u.ng cˇa.p d¯ı˙’nh v3 v`a v4.
Trang 10
.
.
.
.
v1
4
v5
e1 e2
e3
e4
e5
e8
e9
•
•
•
H`ınh 1.1: V´ı du cu˙’a 2−d¯ˆo` thi c´o hu.´o.ng.
1.1.2 D - ˆo ` thi v`a ´anh xa d¯a tri.
V´o.i mˆo˜i x ∈ V, k´y hiˆe.u Γ(x) := {y ∈ V | (x, y) ∈ E} Khi d¯´o ta c´o mˆo.t ´anh xa d¯a tri Γ: V → 2 V , x 7→ Γ(x) K´y hiˆe.u Γ −1 l`a ´anh xa (d¯a tri.) ngu.o c cu˙’a Γ.
Nˆe´u G l`a d¯o.n d¯ˆo ` thi., th`ı d¯ˆo` thi n`ay ho`an to`an d¯u.o c x´ac d¯i.nh bo.˙’i tˆa.p V v`a ´anh xa d¯a tri Γ t`u V v`ao 2 V V`ı vˆa.y, d¯ˆo` thi n`ay c`on c´o thˆe˙’ k´y hiˆe.u l`a G = (V, Γ).
Nˆe´u xo´a cung e9 trong H`ınh 1.1 ta nhˆa.n d¯u.o c d¯o.n d¯ˆo` thi v`a do d¯´o c´o thˆe˙’ biˆe˙’u diˆe˜n
bo.˙’i ´anh xa d¯a tri Γ Trong tru.`o.ng ho p n`ay ta c´o
Γ(v1) = {v2}, Γ(v2) = {v1, v3}, Γ(v3) = {v4, v5}, Γ(v4) = {v5}, Γ(v5) = {v1, v5}.
1.1.3 D - ˆo ` thi vˆo hu.´o.ng
Khi nghiˆen c´u.u mˆo.t sˆo´ t´ınh chˆa´t cu˙’a c´ac d¯ˆo` thi., ta thˆa´y rˇa`ng ch´ung khˆong phu thuˆo.c v`ao hu.´o.ng cu˙’a c´ac cung, t´u.c l`a khˆong cˆa` n phˆan biˆe.t su kh´ac nhau gi˜u.a c´ac d¯iˆe˙’m bˇa´t d¯ˆa`u v`a kˆe´t th´uc D- iˆe` u n`ay d¯o.n gia˙’n l`a mˆo˜i khi c´o ´ıt nhˆa´t mˆo.t cung gi˜u.a hai d¯ı˙’nh ta khˆong quan tˆam d¯ˆe´n th´u tu cu˙’a ch´ung
V´o.i mˆo˜i cung, t´u.c l`a mˆo˜i cˇa.p c´o th´u tu (v i , v j ) ta cho tu.o.ng ´u.ng cˇa.p khˆong c´o th´u.
tu (v i , v j ) go.i l`a c´ac ca.nh Tu.o.ng d¯u.o.ng, ta n´oi rˇa`ng ca.nh l`a mˆo.t cung m`a hu.´o.ng d¯˜a bi bo˙’ quˆen Vˆe ` h`ınh ho.c, ca.nh (v i , v j) d¯u.o c biˆe˙’u diˆe˜n bo.˙’i c´ac d¯oa.n thˇa˙’ng (hoˇa.c cong) v`a khˆong
c´o m˜ui tˆen liˆen thuˆo.c hai d¯iˆe˙’m tu.o.ng ´u.ng hai d¯ı˙’nh v i v`a v j
Trang 11Nghiˆen c´u.u c´ac t´ınh chˆa´t vˆo hu.´o.ng cu˙’a d¯ˆo ` thi G = (V, E) d¯u.a vˆe` kha˙’o s´at tˆa.p E l`a tˆa.p c´ac ca.nh, t´u.c l`a, mˆo.t tˆa.p h˜u.u ha.n c´ac phˆa`n tu.˙’ m`a mˆo˜i phˆa`n tu.˙’ l`a mˆo.t cˇa.p hai d¯ı˙’nh phˆan biˆe.t hay d¯ˆo`ng nhˆa´t cu˙’a V.
D - a d¯ˆo` thi vˆo hu.´o.ng l`a d¯ˆo` thi m`a c´o thˆe˙’ c´o nhiˆe`u ho.n mˆo.t ca.nh liˆen thuˆo.c hai d¯ı˙’nh.
D- ˆo` thi go.i l`a d¯o.n nˆe´u n´o khˆong c´o khuyˆen v`a hai d¯ı˙’nh bˆa´t k`y c´o nhiˆe`u nhˆa´t mˆo.t ca.nh
liˆen thuˆo.c ch´ung
v1
v4
v5
e1 e2
e5
e8
e9
•
•
•
H`ınh 1.2: D- ˆo` thi vˆo hu.´o.ng tu.o.ng ´u.ng d¯ˆo` thi trong H`ınh 1.1
1.1.4 C´ ac d¯i.nh ngh˜ıa ch´ınh
Hai cung, hoˇa.c hai ca.nh go.i l`a kˆe ` nhau nˆe´u ch´ung c´o ´ıt nhˆa´t mˆo.t d¯ı˙’nh chung Chˇa˙’ng ha.n, hai ca.nh e1 v`a e3 trong H`ınh 1.2 l`a kˆe` nhau Hai d¯ı˙’nh v i v`a v j go.i l`a kˆe ` nhau nˆe´u tˆo`n ta.i
ca.nh hoˇa.c cung e k liˆen thuˆo.c ch´ung V´ı du trong H`ınh 1.2 hai d¯ı˙’nh v2 v`a v3 l`a kˆe` nhau (liˆen
thuˆo.c bo.˙’i ca.nh e3), nhu.ng d¯ı˙’nh v2 v`a v5 khˆong kˆe` nhau
Bˆa.c v`a nu.˙’a bˆa.c
Bˆa.c ngo`ai cu˙’a d¯ı˙’nh v ∈ V, k´y hiˆe.u d+G (v) (hay d+(v) nˆe´u khˆong so nhˆa`m lˆa˜n) l`a sˆo´ c´ac cung c´o d¯ı˙’nh v l`a gˆo´c Bˆa.c trong cu˙’a d¯ı˙’nh v ∈ V, k´y hiˆe.u d −
G (v) (hay d − (v) nˆe´u khˆong so nhˆa`m lˆa˜n) l`a sˆo´ c´ac cung c´o d¯ı˙’nh v l`a ngo.n.
Chˇa˙’ng ha.n, d¯ˆo` thi c´o hu.´o.ng trong H`ınh 1.1 c´o d+(v2) = 2, d − (v2) = 1.
Trang 12Hiˆe˙’n nhiˆen rˇa`ng, tˆo˙’ng c´ac bˆa.c ngo`ai cu˙’a c´ac d¯ı˙’nh bˇa`ng tˆo˙’ng c´ac bˆa.c trong cu˙’a c´acd¯ı˙’nh v`a bˇa`ng tˆo˙’ng sˆo´ cung cu˙’a d¯ˆo` thi G, t´u.c l`a
Nˆe´u G l`a d¯ˆo ` thi vˆo hu.´o.ng, bˆa.c cu˙’a d¯ı˙’nh v ∈ V, k´y hiˆe.u d G (v) (hay d(v) nˆe´u khˆong so
nhˆa` m lˆa˜n) l`a sˆo´ c´ac ca.nh liˆen thuˆo.c d¯ı˙’nh v v´o.i khuyˆen d¯u.o c d¯ˆe´m hai lˆa`n V´ı du d¯ˆo` thi vˆo hu.´o.ng trong H`ınh 1.2 c´o d(v2) = 3, d(v5) = 5.
C´ac cung (ca.nh) liˆen thuˆo.c tˆa.p A ⊂ V C´ac d¯ˆo´i chu tr`ınh
Gia˙’ su.˙’ A ⊂ V K´y hiˆe.u ω+(A) l`a tˆa.p tˆa´t ca˙’ c´ac cung c´o d¯ı˙’nh gˆo´c thuˆo.c A v`a d¯ı˙’nh ngo.n thuˆo.c A c := V \ A, v`a ω − (A) l`a tˆa.p tˆa´t ca˙’ c´ac cung c´o d¯ı˙’nh ngo.n thuˆo.c A v`a d¯ı˙’nh gˆo´c thuˆo.c
A c D- ˇa.t
ω(A) = ω+(A) ∪ ω − (A).
Tˆa.p c´ac cung hoˇa.c ca.nh c´o da.ng ω(A) go.i l`a d¯ˆo´i chu tr`ınh cu˙’a d¯ˆo` thi
D- ˆo` thi c´o tro.ng sˆo´
D - ˆo` thi c´o tro.ng sˆo´ nˆe´u trˆen mˆo˜i cung (hoˇa.c ca.nh) e ∈ E c´o tu.o.ng ´u.ng mˆo.t sˆo´ thu c w(e) go.i l`a tro.ng lu.o ng cu˙’a cung e.
D- ˆo` thi d¯ˆo´i x´u.ng
D- ˆo` thi c´o hu.´o.ng go.i l`a d¯ˆo´i x´u.ng nˆe´u c´o bao nhiˆeu cung da.ng (v i , v j) th`ı c˜ung c´o bˆa´y nhiˆeu
cung da.ng (v j , v i ).
D- ˆo` thi pha˙’n d¯ˆo´i x´u.ng
D- ˆo` thi c´o hu.´o.ng go.i l`a pha˙’n d¯ˆo´i x´u.ng nˆe´u c´o cung da.ng (v i , v j) th`ı khˆong c´o cung da.ng
(v j , v i ).
Trang 13D- ˆo` thi d¯ˆa` y d¯u˙’
D- ˆo` thi vˆo hu.´o.ng go.i l`a d¯ˆa`y d¯u˙’ nˆe´u hai d¯ı˙’nh bˆa´t k`y v i v`a v j tˆo`n ta.i mˆo.t ca.nh da.ng (v i , v j ).
D- o.n d¯ˆo` thi vˆo hu.´o.ng d¯ˆa`y d¯u˙’ n d¯ı˙’nh d¯u.o c k´y hiˆe.u l`a K n
D- ˆo` thi con
Gia˙’ su.˙’ A ⊂ V D - ˆo` thi con d¯u.o c sinh bo.˙’i tˆa.p A l`a d¯ˆo` thi G A := (A, E A) trong d¯´o c´ac d¯ı˙’nh l`ac´ac phˆa` n tu.˙’ cu˙’a tˆa.p A v`a c´ac cung trong E A l`a c´ac cung cu˙’a G m`a hai d¯ı˙’nh n´o liˆen thuˆo.c thuˆo.c tˆa.p A.
Nˆe´u G l`a d¯ˆo` thi biˆe˙’u diˆe˜n ba˙’n d¯ˆo` giao thˆong cu˙’a nu.´o.c Viˆe.t Nam th`ı d¯ˆo` thi biˆe˙’u diˆe˜nba˙’n d¯ˆo` giao thˆong cu˙’a th`anh phˆo´ D- `a La.t l`a mˆo.t d¯ˆo` thi con
D- ˆo` thi bˆo phˆa.n
X´et d¯ˆo` thi G = (V, E) v`a U ⊂ E D - ˆo` thi bˆo phˆa.n sinh bo.˙’i tˆa.p U l`a d¯ˆo` thi v´o.i tˆa.p d¯ı˙’nh V v`a c´ac cung thuˆo.c U (c´ac cung cu˙’a E \ U bi xo´a kho˙’i G).
D- ˆo` thi con bˆo phˆa.n
X´et d¯ˆo` thi G = (V, E) v`a A ⊂ V, U ⊂ E D - ˆo` thi con bˆo phˆa.n sinh bo.˙’i tˆa.p A v`a U l`a d¯ˆo` thi bˆo phˆa.n cu˙’a G A sinh bo.˙’i U.
1.2 Ma trˆ a.n biˆe˙’u diˆe˜n d¯ˆo ` thi.
1.2.1 Ma trˆ a.n liˆen thuˆo.c d¯ı˙’nh-cung
Ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-cung cu˙’a d¯ˆo` thi G = (V, E) l`a ma trˆa.n A = (a ij ), i = 1, 2, , n, j =
1, 2, , m, v´o.i c´ac phˆa ` n tu.˙’ 0, 1 v`a −1, trong d¯´o mˆo˜i cˆo.t biˆe˙’u diˆe˜n mˆo.t cung cu˙’a G v`a mˆo˜i h`ang biˆe˙’u diˆe˜n mˆo.t d¯ı˙’nh cu˙’a G Nˆe´u e k = (v i , v j ) ∈ E th`ı tˆa´t ca˙’ c´ac phˆa ` n tu.˙’ cu˙’a cˆo.t k bˇa`ng
khˆong ngoa.i tr`u
a ik = 1, a jk = −1.
Trang 14V´ı du 1.2.1 Ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-cung cu˙’a d¯ˆo` thi trong H`ınh 1.3 l`a
e1 e2 e3 e4 e5
.
e1
e2
e3
e4
e5
H`ınh 1.3:
Nhˇa´c la.i rˇa`ng, ma trˆa.n vuˆong go.i l`a unimodular nˆe´u d¯i.nh th´u.c cu˙’a n´o bˇa`ng 1 hoˇa.c
−1 Ma trˆa.n A cˆa´p m × n go.i l`a total unimodular nˆe´u tˆa´t ca˙’ c´ac ma trˆa.n vuˆong con khˆong suy biˆe´n cu˙’a A l`a unimodular.
Mˆe.nh d¯ˆe` 1.2.2 Ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-cung cu˙’a d¯ˆo` thi G = (V, E) l`a total unimodular.
Ch´u.ng minh Ch´u ´y rˇa`ng ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-cung cu˙’a d¯ˆo` thi G = (V, E) ch´u.a d¯´ung
hai phˆa` n tu.˙’ kh´ac khˆong trˆen mˆo˜i cˆo.t, mˆo.t bˇa`ng 1 v`a mˆo.t bˇa`ng −1 Do d¯´o ta c´o thˆe˙’ ch´u.ng
minh theo quy na.p nhu sau: Hiˆe˙’n nhiˆen, tˆa´t ca˙’ c´ac ma trˆa.n vuˆong con khˆong suy biˆe´n cˆa´p 1
cu˙’a A l`a modular; gia˙’ su.˙’ khˇa˙’ng d¯i.nh d¯´ung cho mo.i ma trˆa.n con khˆong suy biˆe´n cˆa´p (k − 1) X´et ma trˆa.n vuˆong con A 0 cˆa´p k cu˙’a A Nˆe´u mˆo˜i cˆo.t cu˙’a A 0 ch´u.a d¯´ung hai phˆa` n tu.˙’
kh´ac khˆong th`ı det(A 0 ) = 0 (thˆa.t vˆa.y, tˆo˙’ng tˆa´t ca˙’ c´ac h`ang cu˙’a A 0 l`a vector khˆong, do d¯´o c´ac
h`ang l`a d¯ˆo.c lˆa.p tuyˆe´n t´ınh) Nˆe´u tˆo`n ta.i mˆo.t cˆo.t cu˙’a A 0 khˆong c´o phˆa` n tu.˙’ kh´ac khˆong th`ı
det(A 0 ) = 0 Cuˆo´i c`ung, nˆe´u tˆo `n ta.i cˆo.t j cu˙’a A 0 sao cho c´o d¯´ung mˆo.t phˆa`n tu.˙’ kh´ac khˆong
a ij (bˇa`ng 1, hay −1) th`ı det(A 0 ) = ± det(A 00 ), trong d¯´o A 00 l`a ma trˆa.n vuˆong cˆa´p (k − 1) nhˆa.n d¯u.o c t`u A 0 bˇa`ng c´ach xo´a h`ang i v`a cˆo.t j Theo gia˙’ thiˆe´t quy na.p, det(A 0 ) bˇa`ng 1, −1
Trang 151.2.2 Ma trˆ a.n liˆen thuˆo.c d¯ı˙’nh-ca.nh
X´et d¯ˆo` thi vˆo hu.´o.ng G = (V, E) Ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-ca.nh cu˙’a d¯ˆo` thi G l`a ma trˆa.n
A = (a ij ), i = 1, 2, , n, j = 1, 2, , m, v´o.i c´ac phˆa ` n tu.˙’ 0 v`a 1, trong d¯´o mˆo˜i cˆo.t biˆe˙’u diˆe˜n mˆo.t ca.nh cu˙’a G v`a mˆo˜i h`ang biˆe˙’u diˆe˜n mˆo.t d¯ı˙’nh cu˙’a G; ngo`ai ra, nˆe´u ca.nh e k liˆen thuˆo.c
hai d¯ı˙’nh v i v`a v j th`ı tˆa´t ca˙’ c´ac phˆa` n tu.˙’ cu˙’a cˆo.t k bˇa`ng khˆong ngoa.i tr`u.
a ik = 1, a jk = 1.
V´ı du 1.2.3 Ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-ca.nh cu˙’a d¯ˆo` thi trong H`ınh 1.4 l`a
e1 e2 e3 e4 e5
.
e1
e2
e3
e4
e5
H`ınh 1.4:
Tr´ai v´o.i ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-cung, n´oi chung ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-ca.nh khˆong total unimodular Chˇa˙’ng ha.n, trong v´ı du trˆen, ma trˆa.n con
1 0 1
0 1 1
c´o d¯i.nh th´u.c bˇa`ng −2.
D- ˆo` thi vˆo hu.´o.ng G = (V, E) go.i l`a hai phˆa`n nˆe´u c´o thˆe˙’ phˆan hoa.ch tˆa.p c´ac d¯ı˙’nh
V th`anh hai tˆa.p con r`o.i nhau V1 v`a V2 sao cho d¯ˆo´i v´o.i mˆo˜i ca.nh (v i , v j ) ∈ E th`ı hoˇa.c
v i ∈ V1, v j ∈ V2 hoˇa.c v j ∈ V1, v i ∈ V2.
Trang 16
H`ınh 1.5: D- ˆo` thi hai phˆa`n K 2,3 V´ı du 1.2.4 Dˆe˜ kiˆe˙’m tra d¯ˆo` thi K 2,3 trong H`ınh 1.5 l`a hai phˆa` n
Mˆe.nh d¯ˆe` 1.2.5 Ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-ca.nh cu˙’a d¯ˆo` thi vˆo hu.´o.ng G = (V, E) l`a total unimodular nˆe´u v`a chı˙’ nˆe´u G l`a d¯ˆo ` thi hai phˆa`n.
Ch´u.ng minh (1) Nˆe´u d¯ˆo` thi l`a hai phˆa`n, th`ı ch´ung ta c´o thˆe˙’ ch´u.ng minh theo quy na.p rˇa`ng
mo.i ma trˆa.n vuˆong con B cu˙’a ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-ca.nh c´o d¯i.nh th´u.c det(B) = 0, 1 hoˇa.c
−1 D- iˆe` u n`ay d¯´ung v´o.i c´ac ma trˆa.n vuˆong con cˆa´p 1; gia˙’ su.˙’ khˇa˙’ng d¯i.nh d¯´ung v´o.i c´ac ma
trˆa.n vuˆong con cˆa´p (k − 1) X´et ma trˆa.n vuˆong con B cˆa´p k.
Nˆe´u mˆo˜i cˆo.t B j cu˙’a B ch´u.a d¯´ung hai phˆa` n tu.˙’ bˇa`ng 1 th`ı
X
i∈I1
B i = X
i∈I2
B i ,
trong d¯´o I1 v`a I2 l`a c´ac tˆa.p chı˙’ sˆo´ tu.o.ng ´u.ng hai phˆan hoa.ch cu˙’a tˆa.p c´ac d¯ı˙’nh V v`a B i l`a
vector h`ang cu˙’a B C´ac vector h`ang phu thuˆo.c tuyˆe´n t´ınh, nˆen det(B) = 0.
Nˆe´u, ngu.o c la.i, tˆo`n ta.i cˆo.t c´o d¯´ung mˆo.t phˆa`n tu.˙’ bˇa`ng 1, chˇa˙’ng ha.n b ij = 1, k´y hiˆe.u C l`a ma trˆa.n nhˆa.n d¯u.o c t`u B bˇa`ng c´ach xo´a h`ang i v`a cˆo.t j Th`ı
det(B) = ± det(C) (= 0, 1 hoˇa.c − 1 theo quy na.p).
(2) Mˇa.t kh´ac, dˆe˜ d`ang ch´u.ng minh rˇa`ng ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-ca.nh cu˙’a d¯ˆo` thi l`a mˆo.t chu
tr`ınh d¯ˆo d`ai le˙’ (t´u.c l`a sˆo´ ca.nh trˆen chu tr`ınh l`a le˙’-xem Phˆa`n 1.3) c´o d¯i.nh th´u.c bˇa`ng ±2 Do d¯´o G khˆong ch´u.a chu tr`ınh d¯ˆo d`ai le˙’ v`a v`ı vˆa.y n´o l`a hai phˆa`n theo bˆo˙’ d¯ˆe` sau /
Bˆo˙’ d¯ˆ` 1.2.6 De - ˆo ` thi vˆo hu.´o.ng G l`a hai phˆa`n nˆe´u v`a chı˙’ nˆe´u G khˆong ch´u.a chu tr`ınh c´o d¯ˆo d`ai le˙’.
Ch´u.ng minh D - iˆe ` u kiˆe.n cˆa`n Do V d¯u.o c phˆan hoa.ch th`anh V1 v`a V2 :
V = V2∪ V2, V1∩ V2 = ∅.
Trang 17Gia˙’ thiˆe´t tˆo`n ta.i mˆo.t chu tr`ınh c´o d¯ˆo d`ai le˙’
µ = {v i1, v i2, , v i q , v i1} v`a khˆong mˆa´t t´ınh tˆo˙’ng qu´at, lˆa´y v i1 ∈ V1 Do G l`a hai phˆa` n, nˆen hai d¯ı˙’nh liˆen tiˆe´p trˆen
chu tr`ınh µ pha˙’i c´o mˆo.t d¯ı˙’nh thuˆo.c V1 v`a d¯ı˙’nh kia thuˆo.c V2 Do d¯´o v i2 ∈ V2, v i3 ∈ V1, , v`a tˆo˙’ng qu´at, v i k ∈ V1 nˆe´u k le˙’ v`a v i k ∈ V2 nˆe´u k chˇa˜n M`a chu tr`ınh µ c´o d¯ˆo d`ai le˙’ nˆen
v i q ∈ V1 v`a bo.˙’i vˆa.y v i1 ∈ V2 D- iˆe` u n`ay mˆau thuˆa˜n v´o.i V1 ∩ V2 = ∅.
D - iˆe ` u kiˆe.n d¯u˙’ Khˆong mˆa´t t´ınh tˆo˙’ng qu´at gia˙’ thiˆe´t d¯ˆo` thi G liˆen thˆong Gia˙’ su.˙’ khˆong tˆo`n
ta.i chu tr`ınh c´o d¯ˆo d`ai le˙’
Cho.n d¯ı˙’nh bˆa´t k`y, chˇa˙’ng ha.n v i v`a g´an nh˜an cho n´o l`a “ + ” Sau d¯´o lˇa.p la.i c´ac ph´ep
to´an sau:
Cho.n d¯ı˙’nh d¯˜a d¯u.o c g´an nh˜an v j v`a g´an nh˜an ngu.o c v´o.i nh˜an cu˙’a v j cho tˆa´t ca˙’ c´acd¯ı˙’nh kˆe` v´o.i d¯ı˙’nh v j
Tiˆe´p tu.c qu´a tr`ınh n`ay cho d¯ˆe´n khi xa˙’y ra mˆo.t trong hai tru.`o.ng ho p:
(a) Tˆa´t ca˙’ c´ac d¯ı˙’nh d¯˜a d¯u.o c g´an nh˜an v`a hai d¯ı˙’nh bˆa´t k`y kˆe` nhau c´o nh˜an kh´ac nhau (mˆo.t
mang dˆa´u + v`a mˆo.t mang dˆa´u −); hoˇa.c
(b) Tˆo`n ta.i d¯ı˙’nh, chˇa˙’ng ha.n v j k , d¯u.o c g´an hai nh˜an kh´ac nhau.
Trong Tru.`o.ng ho p (a), d¯ˇa.t V1 l`a tˆa.p tˆa´t ca˙’ c´ac d¯ı˙’nh d¯u.o c g´an nh˜an “+” v`a V2 l`a tˆa.p tˆa´t
ca˙’ c´ac d¯ı˙’nh d¯u.o c g´an nh˜an “−” Do tˆa´t ca˙’ c´ac ca.nh liˆen thuˆo.c gi˜u.a c´ac cˇa.p d¯ı˙’nh c´o nh˜an
kh´ac nhau nˆen d¯ˆo` thi G l`a hai phˆa`n.
Trong Tru.`o.ng ho p (b), d¯ı˙’nh v j k d¯u.o c g´an nh˜an “+” do.c theo mˆo.t dˆay chuyˆe` n µ1 n`ao
d¯´o, v´o.i c´ac d¯ı˙’nh d¯u.o c g´an nh˜an “+” v`a “−” xen k˜e nhau xuˆa´t ph´at t`u v i v`a kˆe´t th´uc ta.i
v j k Tu.o.ng tu , d¯ı˙’nh v j k d¯u.o c g´an nh˜an “−” do.c theo mˆo.t dˆay chuyˆe ` n µ2 n`ao d¯´o, v´o.i c´ac
d¯ı˙’nh d¯u.o c g´an nh˜an “+” v`a “−” xen k˜e nhau xuˆa´t ph´at t`u v i v`a kˆe´t th´uc ta.i v j k Nhu.ng nhu thˆe´ chu tr`ınh d¯i do.c theo µ1 t`u d¯ı˙’nh v i d¯ˆe´n d¯ı˙’nh v j k sau d¯´o d¯i ngu.o c la.i do.c theo µ2
vˆe` la.i v i c´o d¯ˆo d`ai le˙’ D- iˆe` u n`ay mˆau thuˆa˜n v´o.i gia˙’ thiˆe´t, v`a do d¯´o khˆong thˆe˙’ xa˙’y ra Tru.`o.ng
1.2.3 Ma trˆ a.n kˆe ` hay ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-d¯ı˙’nh
Gia˙’ su.˙’ G = (V, E) l`a d¯ˆo ` thi sao cho c´o nhiˆe`u nhˆa´t mˆo.t cung liˆen thuˆo.c hai d¯ı˙’nh bˆa´t k`y v i
v`a v j Ma trˆa.n kˆe ` hay ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-d¯ı˙’nh l`a ma trˆa.n vuˆong A = (a ij ) cˆa´p n × n
Trang 18v´o.i c´ac phˆa` n tu.˙’ 0 hoˇa.c 1:
a ij :=
(
1 nˆe´u (v i , v j ) ∈ E,
0 nˆe´u ngu.o c la.i
Trong tru.`o.ng ho p d¯ˆo` thi vˆo hu.´o.ng, ma trˆa.n kˆe` cu˙’a d¯o.n d¯ˆo` thi c˜ung c´o thˆe˙’ d¯u.o c d¯i.nh
ngh˜ıa bˇa`ng c´ach xem mˆo˜i ca.nh (v i , v j ) tu.o.ng ´u.ng hai cung (v i , v j ) v`a (v j , v i ) Trong tru.`o.ng
ho p n`ay, ma trˆa.n kˆe` l`a d¯ˆo´i x´u.ng
1.2.4 C´ ac biˆ e˙’u diˆ e ˜n cu˙’a d¯ˆo ` thi.
D- ˆe˙’ mˆo ta˙’ mˆo.t d¯ˆo` thi., ta c´o thˆe˙’ su.˙’ du.ng mˆo.t sˆo´ c´ach biˆe˙’u diˆe˜n kh´ac nhau V´o.i quan d¯iˆe˙’mlˆa.p tr`ınh, n´oi chung c´ac biˆe˙’u diˆe˜n n`ay khˆong tu.o.ng d¯u.o.ng theo kh´ıa ca.nh hiˆe.u qua˙’ cu˙’athuˆa.t to´an
C´o hai c´ach biˆe˙’u diˆe˜n ch´ınh: Th´u nhˆa´t, su.˙’ du.ng ma trˆa.n kˆe` hoˇa.c c´ac dˆa˜n xuˆa´t cu˙’an´o; th´u hai, su.˙’ du.ng ma trˆa.n liˆen thuˆo.c hoˇa.c c´ac dˆa˜n xuˆa´t cu˙’a n´o
Su.˙’ du.ng ma trˆa.n kˆe`
Ch´ung ta biˆe´t rˇa`ng c´ac ma trˆa.n kˆe` cho ph´ep miˆeu ta˙’ hoˇa.c c´ac 1-d¯ˆo` thi d¯i.nh hu.´o.ng, hoˇa.cc´ac d¯o.n d¯ˆo` thi vˆo hu.´o.ng V´o.i c´ach biˆe˙’u diˆe˜n d¯ˆo` thi qua ma trˆa.n kˆe`, ta thˆa´y sˆo´ lu.o ng thˆongtin, gˆo`m c´ac bit 0 v`a 1, cˆa` n lu.u tr˜u l`a n2 C´ac bit c´o thˆe˙’ d¯u.o c kˆe´t ho p trong c´ac t`u K´y hiˆe.u w l`a d¯ˆo d`ai cu˙’a t`u (t´u.c l`a sˆo´ c´ac bit trong mˆo.t t`u m´ay t´ınh) Khi d¯´o mˆo˜i h`ang cu˙’a ma
trˆa.n kˆe` c´o thˆe˙’ d¯u.o c viˆe´t nhu mˆo.t d˜ay n bit trong dn/we t`u.1 Do d¯´o sˆo´ c´ac t`u d¯ˆe˙’ lu.u tr˜u
ma trˆa.n kˆe` l`a ndn/we.
Ma trˆa.n kˆe` cu˙’a d¯ˆo` thi vˆo hu.´o.ng l`a d¯ˆo´i x´u.ng, nˆen ta chı˙’ cˆa`n lu.u tr˜u nu.˙’a tam gi´ac trˆencu˙’a n´o, v`a do d¯´o chı˙’ cˆa` n n(n − 1)/2 bit Tuy nhiˆen, v´o.i c´ach lu.u tr˜u n`ay, s˜e tˇang d¯ˆo ph´u.c
ta.p v`a th`o.i gian t´ınh to´an trong mˆo.t sˆo´ b`ai to´an
Trong tru.`o.ng ho p c´ac ma trˆa.n thu.a (m ¿ n2 v´o.i d¯ˆo` thi c´o hu.´o.ng; m ¿ 1
2n(n + 1) d¯ˆo´i
v´o.i d¯ˆo` thi vˆo hu.´o.ng) c´ach biˆe˜u diˆe˜n n`ay l`a l˜ang ph´ı Do d¯´o ta s˜e t`ım c´ach biˆe˙’u diˆe˜n chı˙’ c´acphˆa` n tu.˙’ kh´ac khˆong
V`ı mu.c d¯´ıch n`ay ta s˜e su.˙’ du.ng mˆo.t ma˙’ng danh s´ach kˆe ` cho d¯ˆo` thi c´o hu.´o.ng D- ˆo` thi c´o
hu.´o.ng d¯u.o c biˆe˙’u diˆe˜n bo.˙’i mˆo.t ma˙’ng c´ac con tro˙’ V out[1], V out[2], , V out[n], trong d¯´o mˆo˜i con tro˙’ tu.o.ng ´u.ng v´o.i mˆo.t d¯ı˙’nh trong d¯ˆo` thi c´o hu.´o.ng Mˆo˜i phˆa`n tu.˙’ cu˙’a ma˙’ng V out[i] chı˙’ d¯ˆe´n mˆo.t n´ut d¯ˆa`u lu.u tr˜u mu.c d˜u liˆe.u cu˙’a n´ut tu.o.ng ´u.ng d¯ı˙’nh v i v`a ch´u.a mˆo.t con tro˙’
1K´y hiˆe.u dxe l`a sˆo´ nguyˆen nho˙’ nhˆa´t khˆong b´e ho.n x.
Trang 19chı˙’ d¯ˆe´n mˆo.t danh s´ach liˆen kˆe´t cu˙’a c´ac d¯ı˙’nh kˆe` (d¯ı˙’nh d¯u.o c nˆo´i v´o.i v i theo hu.´o.ng t`u v i ra) Mˆo˜i n´ut kˆe` c´o hai tru.`o.ng:
1 Tru.`o.ng sˆo´ nguyˆen: lu.u tr˜u sˆo´ hiˆe.u cu˙’a d¯ı˙’nh kˆe` ; v`a
2 Tru.`o.ng liˆen kˆe´t chı˙’ d¯ˆe´n n´ut kˆe´ tiˆe´p trong danh s´ach kˆe` n`ay
.
.
.
.
v1 v2 v3 v4 v5 v6 • • • • • • H`ınh 1.6: C´ach biˆe˙’u diˆe˜n ma˙’ng danh s´ach kˆe` V out[] cu˙’a d¯ˆo` thi c´o hu.´o.ng trong H`ınh 1.6 d¯u.o c cho tu.o.ng ´u.ng trong H`ınh 1.7 (gia˙’ su.˙’ c´ac mu.c d˜u liˆe.u tu.o.ng ´u.ng c´ac d¯ı˙’nh theo th´u tu l`a A, B, C, D, E, F ). N´ut d¯ˆa` u V out[1]
•
•
•
A v4 v5 NULL V out[2]
•
•
•
B v1 v3 NULL V out[3]
•
•
C v3 NULL V out[4]
•
•
•
D v2 v3 NULL V out[5]
•
•
•
E v3 v6 NULL V out[6]
•
•
H`ınh 1.7: Danh s´ach kˆe` V out[] tu.o.ng ´u.ng d¯ˆo` thi trong H`ınh 1.6
Thay v`ı con tro˙’ chı˙’ d¯ˆe´n mˆo.t danh s´ach c´ac d¯ı˙’nh t`u v i d¯i ra trong V out[i], ta tro˙’ d¯ˆe´n danh s´ach c´ac d¯ı˙’nh d¯i d¯ˆe´n v i v`a do d¯´o c´o thˆe˙’ lu.u tr˜u d¯ˆo` thi thˆong qua ma˙’ng c´ac danh s´ach
Trang 20kˆe` V in[i] H`ınh 1.8 minh ho.a ma˙’ng c´ac danh s´ach kˆe` V in[] cu˙’a d¯ˆo` thi c´o hu.´o.ng trong H`ınh
1.6
D- ˆe˙’ ´y rˇa`ng, c´ac sˆo´ trong n´ut kˆe` cu˙’a V out[] (tu.o.ng ´u.ng, V in[]) l`a nh˜u.ng chı˙’ sˆo´ cˆo.t
(tu.o.ng ´u.ng, h`ang) trong ma trˆa.n kˆe` cu˙’a d¯ˆo` thi m`a o.˙’ d¯´o sˆo´ 1 xuˆa´t hiˆe.n Ngo`ai ra, trong tru.`o.ng ho p d¯ˆo` thi vˆo hu.´o.ng, hai danh s´ach kˆe` n`ay l`a tr`ung nhau
Khi d¯ˆo` thi c´o tro.ng sˆo´, t´u.c l`a nˆe´u mˆo˜i cung hoˇa.c ca.nh e ∈ E c´o mˆo.t tro.ng lu.o ng w(e),
ta chı˙’ cˆa` n mo.˙’ rˆo.ng cˆa´u tr´uc cu˙’a mˆo˜i n´ut trong danh s´ach kˆe` bˇa`ng c´ach thˆem mˆo.t tru.`o.ng lu.u tr˜u tro.ng lu.o ng cu˙’a cung
C´ach biˆe˙’u diˆe˜n bˇa`ng danh s´ach kˆe` cu˙’a d¯ˆo` thi c´o hu.´o.ng c´o thˆe˙’ d¯u.o c c`ai d¯ˇa.t trong ngˆon ng˜u lˆa.p tr`ınh C v´o.i c´ac khai b´ao trong thu viˆe.n Graph.h (xem Phu lu.c A) D- ˆe˙’ xˆay du ng ma˙’ng c´ac danh s´ach kˆe` V out[] v`a V in[] cho mˆo.t d¯ˆo` thi., ta c´o thˆe˙’ su.˙’ du.ng c´ac thu˙’ tu.c
MakeV out() v`a MakeV in() tu.o.ng ´u.ng
N´ut d¯ˆa` u
V in[1]
•
•
•
A v2 v6 NULL V in[2]
•
•
B v4 NULL V in[3]
•
•
•
•
•
C v2 v3 v4 v5 NULL V in[4]
•
•
D v1 NULL V in[5]
•
•
E v1 NULL V in[6]
•
•
H`ınh 1.8: Danh s´ach kˆe` V in[] tu.o.ng ´u.ng d¯ˆo` thi trong H`ınh 1.6
Su.˙’ du.ng c´ac ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-cung hoˇa.c d¯ı˙’nh-ca.nh
Ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-cung hoˇa.c d¯ı˙’nh-ca.nh cho ph´ep ch´ung ta mˆo ta˙’ d¯ˆa`y d¯u˙’ cˆa´u tr´uc cu˙’a
mˆo.t d¯a d¯ˆo` thi khˆong c´o khuyˆen Tuy nhiˆen, do chı˙’ c´o hai phˆa`n tu.˙’ kh´ac khˆong trong mˆo˜i
cˆo.t, nˆen c´o thˆe˙’ biˆe˙’u diˆe˜n thˆong tin o.˙’ da.ng th´ıch ho p ho.n
Ch´ung ta d¯i.nh ngh˜ıa hai ma˙’ng tuyˆe´n t´ınh α[] v`a β[] chiˆe ` u m trong d¯´o v´o.i mˆo˜i cung hoˇa.c ca.nh e k , k = 1, 2, , m, c´ac gi´a tri α[k] v`a β[k] l`a c´ac chı˙’ sˆo´ cu˙’a c´ac d¯ı˙’nh m`a e k liˆen
Trang 21
.
.
v1
v2
v3
•
•
•
e1 e2 e3
e4
e5
e6
e7
e8
H`ınh 1.9:
thuˆo.c Trong tru.`o.ng ho p c´o hu.´o.ng, ch´ung ta quyˆe´t d¯i.nh α[k] l`a d¯ı˙’nh gˆo´c v`a β[k] l`a d¯ı˙’nh ngo.n cu˙’a cung e k
Ch´u ´y rˇa`ng, tr´ai v´o.i ma trˆa.n kˆe` , c´ach biˆe˙’u diˆe˜n n`ay c˜ung c´o thˆe˙’ d¯ˇa.c tru.ng cho c´ac d¯a d¯ˆo` thi c´o khuyˆen
Chˇa˙’ng ha.n, d¯a d¯ˆo` thi cu˙’a H`ınh 1.9 trong d¯´o c´ac cung d¯u.o c d¯´anh sˆo´, ta nhˆa.n d¯u.o c
Trong tru.`o.ng ho p d¯ˆo` thi c´o tro.ng sˆo´, ta chı˙’ cˆa`n thˆem mˆo.t ma˙’ng w[] k´ıch thu.´o.c m lu.u tr˜u tro.ng lu.o ng cu˙’a mˆo˜i ca.nh hoˇa.c cung v´o.i tu.o.ng ´u.ng mˆo.t-mˆo.t c´ac ma˙’ng α[] v`a β[].
Vˆe` c´ach kh´ac biˆe˙’u diˆe˜n hiˆe.u qua˙’ ho.n cu˙’a d¯ˆo` thi vˆo hu.´o.ng su.˙’ du.ng danh s´ach c´ac ca.nh xem [43]
Mˆo´i liˆen hˆe gi˜u.a c´ac biˆe˙’u diˆe˜n
Dˆe˜ d`ang thˆa´y rˇa`ng tˆo`n ta.i c´ac thuˆa.t to´an d¯a th´u.c d¯ˆe˙’ chuyˆe˙’n d¯ˆo˙’i gi˜u.a c´ac kiˆe˙’u d˜u liˆe.u trˆen d¯ˆo` thi H`ınh 1.10 minh ho.a c´ac kha˙’ nˇang c´o thˆe˙’ c´o
D- ˆe˙’ chuyˆe˙’n d¯ˆo˙’i gi˜u.a c´ac kiˆe˙’u d˜u liˆe.u, cˆa`n c´ac chu.o.ng tr`ınh thu c hiˆe.n d¯iˆe`u n`ay (b`ai tˆa.p) C´ac biˆe˙’u diˆe˜n n`ay c´o thˆe˙’ ca˙’i biˆen cho ph`u ho p v´o.i yˆeu cˆa`u Chˇa˙’ng ha.n, d¯ˆo` thi c´o
Trang 22Ma trˆa.n kˆe` d¯u.o c kˆe´t theo h`ang
Ma trˆa.n kˆe` da.ng tu.`o.ng minh
Ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-cung
hoˇa.c ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-ca.nh
da.ng tu.`o.ng minh
Ma trˆa.n kˆe` d¯u.o c kˆe´t theo cˆo.t
Ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-cunghoˇa.c ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-ca.nh
da.ng kˆe´t theo h`ang
Ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-cunghoˇa.c ma trˆa.n liˆen thuˆo.c d¯ı˙’nh-ca.nh
da.ng kˆe´t theo cˆo.t
Trang 231.3 T´ınh liˆ en thˆ ong
1.3.1 Dˆ ay chuyˆ ` n v`a chu tr`ınh e
Gia˙’ su.˙’ v0, v k l`a c´ac d¯ı˙’nh cu˙’a d¯ˆo` thi vˆo hu.´o.ng G := (V, E) Dˆay chuyˆe`n µ t`u v0 d¯ˆe´n v k d¯ˆo
d`ai k l`a mˆo.t d˜ay xen k˜e (k + 1) d¯ı˙’nh v`a k ca.nh bˇa´t d¯ˆa`u t`u v0 v`a kˆe´t th´uc ta.i v k ,
µ := {v0, e1, v1, e2, v2, , v k−1 , e k , v k }, trong d¯´o ca.nh e i liˆen thuˆo.c c´ac d¯ı˙’nh v i−1 v`a v i , i = 1, 2, , k D- ˆe˙’ gia˙’n tiˆe.n, ta thu.`o.ng viˆe´t
µ := {e1, e2, , e k }.
Dˆay chuyˆe` n d¯u.o c go.i l`a d¯o.n gia˙’n (tu.o.ng ´u.ng, so cˆa´p) nˆe´u n´o khˆong d¯i hai lˆa`n qua
c`ung mˆo.t ca.nh (tu.o.ng ´u.ng, d¯ı˙’nh)
Chu tr`ınh l`a mˆo.t dˆay chuyˆe` n trong d¯´o d¯ı˙’nh d¯ˆa` u tr`ung v´o.i d¯ı˙’nh cuˆo´i Chu tr`ınh qua
mˆo˜i ca.nh d¯´ung mˆo.t lˆa`n go.i l`a d¯o.n gia˙’n Chu tr`ınh l`a so cˆa´p nˆe´u n´o d¯i qua mˆo˜i d¯ı˙’nh d¯´ung
mˆo.t lˆa`n tr`u d¯ı˙’nh d¯ˆa`u tiˆen hai lˆa`n (mˆo.t lˆa`n l´uc xuˆa´t ph´at v`a mˆo.t l´uc tro.˙’ vˆe` )
D- ˆo` thi trong H`ınh 1.11 c´o
Trang 241.3.2 D - u.`o.ng d¯i v`a ma.ch
Gia˙’ su.˙’ v0, v k l`a c´ac d¯ı˙’nh cu˙’a d¯ˆo` thi c´o hu.´o.ng G := (V, E) D - u.`o.ng d¯i µ t`u v0 d¯ˆe´n v k d¯ˆo d`ai
k l`a mˆo.t d˜ay xen k˜e (k + 1) d¯ı˙’nh v`a k cung bˇa´t d¯ˆa`u t`u v0 v`a kˆe´t th´uc ta.i v k ,
µ := {v0, e1, v1, e2, v2, , v k−1 , e k , v k }, trong d¯´o cung e i liˆen thuˆo.c c´ac d¯ı˙’nh v i−1 v`a v i , i = 1, 2, , k D- ˆe˙’ gia˙’n tiˆe.n, ta c´o thˆe˙’ k´y
hiˆe.u d¯u.`o.ng d¯i µ l`a {e1, e2, , e k }.
Do d¯´o trong H`ınh 1.12 d˜ay c´ac cung
µ1 := {e6, e5, e9, e8, e4}
µ2 := {e1, e6, e5, e9}
µ3 := {e1, e6, e5, e9, e10, e6, e4}
l`a c´ac d¯u.`o.ng d¯i
D- u.`o.ng d¯i l`a d¯o.n gia˙’n nˆe´u khˆong ch´u.a cung n`ao qu´a mˆo.t lˆa`n Suy ra c´ac d¯u.`o.ng d¯i
µ1, µ2 l`a d¯o.n gia˙’n, nhu.ng d¯u.`o.ng d¯i µ3 khˆong d¯o.n gia˙’n do n´o su.˙’ du.ng cung e6 hai lˆa` n
D- u.`o.ng d¯i l`a so cˆa´p nˆe´u khˆong d¯i qua d¯ı˙’nh n`ao qu´a mˆo.t lˆa`n Khi d¯´o d¯u.`o.ng d¯i µ2 l`a
so cˆa´p nhu.ng c´ac d¯u.`o.ng d¯i µ1 v`a µ3 l`a khˆong so cˆa´p Hiˆe˙’n nhiˆen, d¯u.`o.ng d¯i so cˆa´p l`a d¯o.n
gia˙’n nhu.ng ngu.o c la.i khˆong nhˆa´t thiˆe´t d¯´ung Chˇa˙’ng ha.n, ch´u ´y rˇa`ng d¯u.`o.ng d¯i µ1 l`a d¯o.n
gia˙’n nhu.ng khˆong so cˆa´p, d¯u.`o.ng d¯i µ2 v`u.a d¯o.n gia˙’n v`a v`u.a so cˆa´p, d¯u.`o.ng d¯i µ3 khˆongd¯o.n gia˙’n c˜ung khˆong so cˆa´p
Ch´u ´y rˇa`ng, kh´ai niˆe.m dˆay chuyˆe` n l`a ba˙’n sao khˆong c´o hu.´o.ng cu˙’a d¯u.`o.ng d¯i v`a ´apdu.ng cho c´ac d¯ˆo` thi m`a khˆong d¯ˆe˙’ ´y d¯ˆe´n hu.´o.ng cu˙’a c´ac cung
D- u.`o.ng d¯i c˜ung c´o thˆe˙’ d¯u.o c biˆe˙’u diˆe˜n bo.˙’i d˜ay c´ac d¯ı˙’nh m`a ch´ung d¯i qua trong tru.`o.ng
ho p khˆong c´o cung song song (t´u.c hai cung c´o c`ung gˆo´c v`a c`ung ngo.n) Do d¯´o, d¯u.`o.ng d¯i
µ1 c´o thˆe˙’ biˆe˙’u diˆe˜n bo.˙’i d˜ay d¯ı˙’nh {v2, v5, v4, v3, v5, v6}.
Ma.ch l`a mˆo.t d¯u.`o.ng d¯i {e1, e2, , e k } trong d¯´o d¯ı˙’nh gˆo´c cu˙’a cung e1 tr`ung v´o.i d¯ı˙’nh
ngo.n cu˙’a cung e k Do d¯´o d¯u.`o.ng d¯i {e5, e9, e10, e6} trong H`ınh 1.12 l`a ma.ch.
1.3.3 T´ınh liˆ en thˆ ong
D- ˆo` thi vˆo hu.´o.ng go.i l`a liˆen thˆong nˆe´u tˆa´t ca˙’ c´ac cˇa.p d¯ı˙’nh v i v`a v j tˆo`n ta.i dˆay chuyˆe`n t`u v i
d¯ˆe´n v j Quan hˆe v i Rv j nˆe´u v`a chı˙’ nˆe´u v i = v j hoˇa.c tˆo`n ta.i mˆo.t dˆay chuyˆe` n nˆo´i hai d¯ı˙’nh v i v`a v j l`a quan hˆe tu.o.ng d¯u.o.ng (pha˙’n xa., d¯ˆo´i x´u.ng v`a bˇa´c cˆa`u).