1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi ĐH theo Cấu trúc 2010 (06)

1 244 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 146 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bộ Giáo Dục và Đào tạoĐỀ THAM KHẢO Emai: phukhanh@maths.vn ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN, khối A ĐỀ 06 I.. Các mặt bên tạo với đáy góc .. Tìm mđể bất phươn

Trang 1

Bộ Giáo Dục và Đào tạo

ĐỀ THAM KHẢO

Emai: phukhanh@maths.vn

ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010

Môn thi : TOÁN, khối A

ĐỀ 06

I PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH ( 7,0 điểm )

Câu I : ( 2 điểm )

1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số y x 34x24x1

2 Tìm trên đồ thị của hàm số y2x4 3x22x1 những điểm A có khoảng cách đến đường thẳng

 d : 2x y  1 0 nhỏ nhất

Câu II: ( 2 điểm )

1 Giải phương trình : 2  

2log xlog logx 2x1 1

2.Cho tam giác ABCA B, nhọn và thỏa mãn sin2A sin2B 2009sinC Chứng minh rằng tam giác ABC

vuông tại C

Câu III: ( 1 điểm ) Tính tích phân

2

3

1 sin cos sin

Câu IV: ( 1 điểm ) Cho hình chóp tứ diện đều S ABCD Các mặt bên tạo với đáy góc  Gọi K là trung điểm cạnh SB Tính góc giữa hai mặt phẳng AKC và SAB theo 

Câu V: ( 1 điểm ) Cho bất phương trình :  

2

4

x

 Tìm mđể bất phương trình có

nghiệm x thuộc tập xác định

II PHẦN RIÊNG ( 3,0 điểm ) Thí sinh chỉ được làm một trong hai phần ( phần 1 hoặc 2 ).

1.Theo chương trình Chuẩn :

Câu VI.a ( 2 điểm )

1 Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn  C có phương trình: x2y2 6x5 0 .Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến với  C mà góc giữa hai tiếp tuyến đó bằng 600

2. Trong không gian Oxyz cho 3điểm 1;0;0 , 0; ;0 ,1 1;1;1

H  K   I  

Tính cosin của góc tạo bởi mặt phẳng

HIK và mặt phẳng toạ độ Oxy

Câu VII.a ( 1 điểm ) Cho 3 số thực dương , ,a b c thoả mãn a2b2c2  Chứng minh rằng :1

3 3 2

bccaab

2. Theo chương trình Nâng cao :

Câu VI.b ( 2 điểm )

1 Trong không gian với hệ trục tọa độ vuông góc Oxyzcho đường thẳng   :

1 2 3

x y z

d   và các điểm A2;0;1 ,

2; 1;0 , 1;0;1

BC Tìm trên đường thẳng  d điểm Ssao cho : SA SB SC 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

đạt giá trị nhỏ nhất

2 Viết phương trình đường phân giác trong của 2 đường thẳng :  d1 : 2x y 3 0,  d2 :x2y6 0

Câu VII.b ( 1 điểm ) Cho 3 số thực dương , ,a b c thoả mãn a b c  1 Chứng minh rằng :

6

a b  b c  c a  .

Ngày đăng: 06/07/2014, 06:00

w