Phương trỡnh bậc nhất 1 ẩn và đưa về phương trỡnh bậc nhất 1 ẩn.. Bạn Hơng đi xe đạp từ nhà ra tới thành phố Hà Tĩnh với vận tốc trung bình là 15 km/h.. Lúc về bạn Hơng đi với vận tốc tr
Trang 1TRƯỜNG THCS AN BÌNH
ĐỀ CƯƠNG ễN TẬP HỌC KỲ II NĂM HỌC 2009-2010 MễN TOÁN LỚP 8. Phần I: Đại số
A Phương trỡnh bậc nhất 1 ẩn và đưa về phương trỡnh bậc nhất 1 ẩn.
Bài 1 Giải cỏc phương trỡnh sau:
a 7x+21 = 0 b 12 - 6x = 6 c 5x – 2 = 2 d -2x +1 = -2 e
3
1
x -
6
5
=
2
1
f
-9
5
x + 1 =
3
2
x – 10 g 3x + 1 = 7x -11 h 15-8x = 9-5x
k 2(x+1) = 3(1 +
3
2
x) m 2(1 -
2
3
x) +3x = 0
Bài 2 Cho phương trỡnh: (m2 - 4)x + 2 = m (1)
a Tỡm m để pt (1) là pt bậc nhất 1 ẩn
b Giải pt (1) với m = -1, 1, 2, 3
c Tỡm m để pt (1) cú nghiệm bằng 1
Bài 3 Giải cỏc phương trỡnh sau:
a
5
3
x
+
3
2
1 x
= -6 b
6
2
3 x
=
4
) 7 ( 2
3 x
+ 5
c 2(x +
5
3
) = 5 – (
5
13
+x) d
2007
2 x
- 1 =
2008
1 x
-
2009
x
Bài 4 Tỡm k để:
a pt (2x +1)(9x +2k) – 5(x + 2) = 40 cú nghiệm bằng 2
b 2(2x + 1) + 18 = 3(x+2)(2x + k) cú nghiệm bằng 1
B Phương trỡnh tớch.
Bài 1 Giải cỏc phương trỡnh sau:
a (4x-10)(24 + 5x) = 0 b (3x – 2)(
7
6
2 x
-
5
3
4 x
) = 0
c (x - 1)(5x + 3) = (3x – 8)(x – 1) d (2 – 3x)(x +1) = (3x – 2)(2 – 5x)
e (2x2 + 1)(4x - 3) = (2x2 + 1)(x – 12 ) f (2x – 1)2 + (2 – x)(2x – 1) = 0
g (x + 2)(3 – 4x) = x2 + 4x + 4 h x - 2 + 3(x2 - 2) = 0
Bài 2 Giải cỏc phương trỡnh sau:
a x2 + 5x + 6 = 0 b x3 + x2+ x +1 = 0 c.x2 - 3x + 2 = 0
d - x2 + 5x = 6 e 2x2 + 3 = -5x f 4x2 - 12x + 5 = 0
g (x - 2)(x - 1) = 0 h x2 + 2x = 0 k x3- 8 = 0 m x2 - 2x - 3 = 0
n 2
(x 2x 1) 4 0
Bài 3 Cho phương trỡnh: x3 + ax2 - 4x - 4 = 0 (1)
a Tỡm a để pt(1) cú nghiệm bằng -2
b Với a vừa tỡm được ở cõu a), hóy tỡm cỏc nghiệm cũn lại
C Phương trỡnh chứa ẩn ở mẫu.
Bài 1 Giải cỏc phương trỡnh sau:
a
1
2
x -
2
1
x = ( 31)(11 2)
x x
x
b.2x -
3
2 2
x
x
=
3
4
x
x
+
7
2
c
2
1
x + 3 =
x
x
2 3
d
1
1
x
x
-
1
4
2
1
1
x
x
e.(
1 2
3
x + 2)(5x – 2) =
1 2
2 5
x
x
f
3
2
x +
9
5 2
x
x
=
3
3
x
g
4
4 2
2 2
2
2
x x
x
x
x
h
3 2
4 3
2 1
1
2
x x x
x x
x
k.3 2 6 1
D Giải bài toỏn bằng cỏch lập phương trỡnh.
Bài 1 Bạn Hơng đi xe đạp từ nhà ra tới thành phố Hà Tĩnh với vận tốc trung bình là 15 km/h Lúc về bạn Hơng đi với vận tốc trung bình 12 km/h, nên thời gian về nhiều hơn thời gian đi là 22 phút Tính
độ dài quãng đờng từ nhà bạn Hơng tới thành phố Hà Tĩnh?
Bài 2 Khi mới nhận lớp 8A, cô giáo chủ nhiệm dự định chia lớp thành 3 tổ có số học sinh nh nhau Nhng sau đó lớp nhận thêm 4 học sinh nữa Do đó, cô giáo chủ nhiệm đã chia đều số học sinh của
Trang 2lớp thành4 tổ Hỏi lớp 8A hiện có bao nhiêu học sinh, biết rằng so với phơng án dự định ban đầu, số học sinh của mỗi tổ hiện nay có ít hơn 2 học sinh?
Bai 3 Hiệu của 2 số bằng 18, tỉ số giữa chúng bằng
8
5
Tìm 2 số đó, biết rằng:
a Hai số đó là 2 số dơng
b Hai số đó là 2 số tùy ý
Bài 4 Một ô tô đi từ Hà Nội đến Thanh Hóa với vận tốc trung bình 40 km/h Sau 2 giờ nghĩ lại tại Thanh Hóa, ô tô lại từ Thanh Hóa về Hà Nội với vận tốc 30 km/h Tính quảng đ ờng Hà Nội - Thanh Hóa, biết rằng tổng thời gian cả đi lẩn về là 10 giờ 45 phút ( kể cả thời gian nghĩ lại tại Thanh Hóa)?
E Bất ph ơng trình bậc nhất một ẩn
Bài 1 Cho a, b là 2 số bất kì thỏa mãn a>b CMR:
a 3a + 1>3b+1 b -5a – 7 < -5b – 7
Bài 2 CMR:
a a2 + b2 - 2ab 0 b
2
2
a
2ab Bài3 Giải cỏc bất phương trỡnh và biểu diễn tập nghiệm trờn trục số
a x 3 x3 x x 6 b 2 2
1
x x
c 4 2 x5
d
30
1 15
8 6
3 2
10
1
x
e x – 2 >4 f -2x + 3 5x – 9
h (x – 1)2 < x(x + 3) k 2x + 3 < 6 –(3 – 4x)
m (x-2)(x+2)>x(x-4) n
3
1
x
x
>4 Bài 4 Giải cỏc phương trỡnh sau:
a | 2x | = x – 6 b | x + 3 | - 3x = -1 c | x + 4 | + 5 = 2x d | -2x | - 18 = 4x
Phần II Hình học
Bài 1 Cho tam giác cân ABC (AB=AC) Vẽ các đờng cao BH, CK
a CMR: BK = CH, KH // BC
b Cho biết BC = a, AB = AC = b Tính độ dài đoạn thẳng BH
Bài 2 Tứ giác ABCD có AB = 4 cm, BC = 20 cm, CD = 25 cm, DA = 8 cm, đờng chéo BD = 10 cm
a Các tam giác ABD và BDC có đồng dạng với nhau không? Vì sao?
b CMR AB // CD
Bài 3 Cho hình thang ABCD (AB // CD) Gọi O là giao điểm của 2 đờng chéo AC và BD
a CMR: OA.OD = OB.OC
b Đờng thẳng qua O vuông góc với AB, CD lần lợt tại H và K CMR:
OK
OH
=
CD AB
Bài 4 Cho tam giác ABC có AD là phân giác Đờng thẳng a song song với BC cắt AB AD và AC lần lợt tại M, I, N Chứng minh: MI
NI =
BD CD
Bài 5 Cho tam giác ABC vuông đỉnh A Có AB = 9 cm AC = 12 cm Tia phân giác của góc A cắt cạnh BC tại D Từ D kẻ DE vuông góc với AC (E thuộc AC)
a Tính độ dài các đoạn thẳng BD, CD, DE
b Tính diện tích của tam giác ABD và ACD
Bài 6 Cho ABC có AB = 6cm, AC = 7,5cm, BC = 9cm Trên tia đối của AB lấy điểm D sao
cho AD = AC
a Chứng minh rằng: ABC đồng dạng CBD
b Tính độ dài đoạn thẳng CD
c CMR: góc BAC = 2 lần góc ACB
Lưu ý: Cỏc em cú thể tỡm để làm thờm cỏc bài tập phần hỡnh học trong sỏch bài tập sau: Bt 52, 53,
54 SBT Tr 76