1. Trang chủ
  2. » Giáo án - Bài giảng

bài tập chương 3 tích phân

2 529 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 132,49 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TÍCH PHÂN I-Tính các tích phân bất định sau: 1... Tính diện tích giới hạn bởi các đường : a.. Tính thể tích vật thể tròn xoay tạo ra khi quay các miền phẳng giới hạn bởi các đường con

Trang 1

TÍCH PHÂN I-Tính các tích phân bất định sau:

1 a.∫ 4 + 4

x

xdx

b.∫ 2 + 4

4

x

dx x

c. 3 24 1

4

dx x

d.∫ 2 − 4

x x dx

x x

x

∫ 2 +−1+1 b.∫ + + − dx

x x

x

5 4

2 3

x x

x x x

∫ −2 −2+++34

2 3

d.x3dx + x

3 a.x x2 +1dx b.∫ 2 +1

x

xdx

c. dx

x

dx x

∫ − 6

2

1 d.∫ 4 +1

x xdx

4 a.xlndx5 x b.x 1dx + xln c.∫cosx.esinx dx d.∫ + x

x

e

dx e

2

1

5 a.e2x +1dx b.x +1

e

dx

c. dx

e

dx e

x

∫ 2 −1

2

d.x5x2dx

6 a.∫sin5 x dx b.∫ 3

3

cos

sin

x

xdx

c ∫cos7x.cos5xdx d.tg5xdx

7 a.∫2+5dxcosx b.∫sinx dx+cosx c ∫3sin2 x dx+5cos2 xd.∫cosdx3x

8 a.x2sinx dx b.xarctgxdx c ∫sin(lnx) dx d.∫ln2xdx

9 a.x

e

xdx

b.xsinxcossxdx c dx

x

x

2

arcsin

d. dx

x

x

∫ 3

ln

II-Tính các tích phân xác định sau:

1 a dx

x

x

∫ −+

1

4

b e dx

x

x

1

) sin(ln

c ∫1 + +

0

x

dx

d.∫π

0

4

cos xdx

2 a ∫1 +

2

9dx

x

x

b ∫1 + +

0

x

xdx

− 4

4

π

π

tgxdx d

2

ln

e

dx

Trang 2

3 a ∫2 +

03 2cos

π

x

dx

dx

x

arctgx

∫1 +

0 2

1 d ln∫8 +

3

e

dx

4 a ∫2

0

cos

π

xdx

e x b ∫1

0

arcsin xdx c ∫1

0

2 3

dx e

x x d ∫π

1 3

cos

sin

dx x

x x

III-Tính các tích phân suy rộng:

1 a. +∞∫

0

cos xdx b +∞∫ +

0 2

1 x

dx

c +∞∫ + −

2

x

dx

d +∞∫

dx

2

ln

2 a. +∞∫

0

2

dx

e x b ∫1

0 x

dx

c ∫1 −

e

dx

d ∫2 −

1

x

dx

IV-Ứng dụng tích phân xác định :

1 Tính diện tích giới hạn bởi các đường :

a y = cosx và trục Ox với 0≤x≤π

b y = 2 – x2 và y = x

c y = x2 và x = y2

d y = 2x , y = 2 và x =0

2 Tính thể tích vật thể tròn xoay tạo ra khi quay các miền phẳng giới hạn

bởi các đường cong sau đây :

a y = tgx , y = 0 và x =

3

π quanh trục ox

b x2+ y( −2)2 ≤1 quanh trục ox

Ngày đăng: 21/06/2014, 16:51

TỪ KHÓA LIÊN QUAN

w