1. Trang chủ
  2. » Luận Văn - Báo Cáo

Đề Luyện Thi Thpt Môn Toán (597).Pdf

5 8 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề Luyện Thi Thpt Môn Toán (597)
Trường học Trường Đại Học Quốc Gia Hà Nội
Chuyên ngành Toán học
Thể loại đề thi thử
Năm xuất bản 2022-2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 121,66 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của

M trên mặt phẳng (Oxy)

A A(1; 0; 3) B A(0; 0; 3) C A(0; 2; 3) D A(1; 2; 0).

Câu 2 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)

A f (−1)= 3 B f (−1)= −1 C f (−1)= −5 D f (−1)= −3

Câu 3 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 4 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A 0 < m < 2 B −2 ≤ m ≤ 2 C −2 < m < 2 D m= 2

Câu 5 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với

cạnh huyền bằng 2a Tính thể tích của khối nón

A.

2.a3

π.a3

2π.a3

π√2.a3

Câu 6 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (−3; 1).

C Hàm số nghịch biến trên khoảng (−∞; −3) D Hàm số đồng biến trên khoảng (−3; 1).

Câu 7 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

A ln(ab)= ln a ln b B ln(ab2)= ln a + (ln b)2

C ln(a

b)= ln a

2)= ln a + 2 ln b

Câu 8 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung

A m < 0 B Không tồn tại m C m < 1

3. D 0 < m <

1

3.

Câu 9 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 9

4

18

1

7.

Câu 10 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn

z1

+

z2

= 2?

Câu 11 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

1

3.

Câu 12 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Trang 2

Câu 13 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Câu 14 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 15 Có bao nhiêu số nguyên x thỏa mãn log3x

2− 16

343 < log7x2− 16

Câu 16 Cho cấp số nhân (un) với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

A. 7

1

1

2.

Câu 17 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

A −21008+ 1 B 21008 C −21008 D −22016

Câu 18 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là −3 và phần ảo là−2 B Phần thực là−3 và phần ảo là −2i.

C Phần thực là 3 và phần ảo là 2i D Phần thực là3 và phần ảo là 2.

Câu 19 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 20 Với mọi số phức z, ta có |z+ 1|2bằng

Câu 21 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 22 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|=

34

√ 34

Câu 23 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= 6√3 B |w|= 4√5 C |w|= √85 D |w|= √48

Câu 24 Những số nào sau đây vừa là số thực và vừa là số ảo?

A C.Truehỉ có số 0 B Không có số nào C Chỉ có số 1 D 0 và 1.

Câu 25 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 26 Nguyên hàmR 1+ lnx

x dx(x > 0) bằng

A ln2x+ lnx + C B x+ 1

2ln

2ln

2x+ lnx + C

Câu 27 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng

tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là

A 3x+ 2y + z − 4 = 0 B 3x − 2y+ z − 12 = 0

C 3x − 2y+ z − 4 = 0 D 3x − 2y+ z + 4 = 0

Câu 28 Tìm hàm số F(x) không là nguyên hàm của hàm số f (x)= sin2x

A F(x) = −cos2x B F(x) = sin2x C F(x)= −cos2x D F(x)= −1

2cos2x.

Trang 3

Câu 29 Hàm số f (x) thoả mãn f

(x)= xxlà:

A x2+ x+1

x+ 1 + C. B x2 x+ C. C (x − 1)x+ C. D (x+ 1)x+ C.

Câu 30 Cho hàm số y= f (x) có đạo hàm, liên tục trên R và f (x) > 0 khi x ∈ [0; 5] Biết f (x)· f (5− x) =

1, tính tích phân I = R5

0 1+ f (x).

3.

Câu 31 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương

trình

C x − 2y+ 2z + 15 = 0 D x − 2y+ 2z − 15 = 0

Câu 32 Phương trình mặt phẳng đi qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n= (−2; 1; −1) là

A 2x + y − z − 4 = 0 B −2x + y − z + 1 = 0 C −2x + y − z + 4 = 0 D −2x + y − z − 4 = 0.

Câu 33 Tích phânR1

0 e−x dx bằng

A. e −1

1

1

e.

Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P= (|z| − 2)2 B P=

|z|2− 22 C P =

|z|2− 42 D P = (|z| − 4)2

Câu 35 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Câu 36 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 37 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 1 B |w|min= 1

2. C |w|min = 3

2. D |w|min = 2

Câu 38 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 1

4;

5

4

!

2;

9 4

!

4

!

4;+∞

!

Câu 39 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

A |A| ≥ 1 B |A| > 1 C |A| < 1 D |A| ≤ 1.

Câu 40 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 1

2 < |z| < 2 B. 3

2 < |z| < 3 C. 5

2 < |z| < 4 D 3 < |z| < 5.

Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 42 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A. 3

2 ≤ |z| ≤ 2. B |z| <

1

1

2 < |z| < 3

2. D |z| > 2.

Trang 4

Câu 43 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x

x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7

3) làm trọng tâm.

Câu 44 Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α

A.

3

√ 3

√ 5

1

2.

Câu 45 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau

Câu 46 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

17

πa2√ 17

πa2√ 17

πa2√ 15

Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 48 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình

x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0

Câu 50 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích

toàn phầnSt pcủa hình nón (N) bằng

A St p = πRh + πR2 B St p = πRl + πR2 C St p = 2πRl + 2πR2 D St p = πRl + 2πR2

Trang 5

HẾT

Ngày đăng: 18/05/2023, 11:01