1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Iec ts 62578 2015

244 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề IEC TS 62578: 2015-04 - Technical Specification on Operating Conditions and Characteristics of Active Inf Feed Converters (AIC) Applications
Trường học Unknown University
Chuyên ngành Electrical Engineering
Thể loại Technical Specification
Năm xuất bản 2015
Thành phố Geneva
Định dạng
Số trang 244
Dung lượng 9,87 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

4 6 Characteristic of a PWM active infe d con erter of voltage source typ an two level to olog... 5 7 Characteristic of a PWM active infe d con erter of voltage source typ an thre level

Trang 1

Syst èmes et équipement s élect roniques de puissance – Conditions de

fonct ionnement et caract érist iques des convert isseurs à al ment at ion act ive

(AIC), y compris les recommandat ions de concept ion pour leurs valeurs

Trang 2

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyr ight © 2 15 IEC, Ge e a, Switzer la d

Al rig ts r es r ve Unle s oth rwis s e ifi d, n p rt of this p blc tio ma b r epr od c d or uti z d in a y form

or b a y me n , ele tr onic or me h nic l in lu in p oto o yin a d microfim, with ut p rmis io in wr itin from

eith r IEC or IEC's memb r Natio al Commite in th c u tr y of th re u ste If y u h v a y q e tio s a o t IEC

c p r i ht or h v a e q ir y a o t o tainin a ditio al ri hts to this p blc tio , ple s c nta t th a dr es b low or

y ur lo al IEC memb r Natio al Commite for ur th r informatio

Dr oits d r eprod ctio ré er vé Sa f in ic tio c ntraire, a c n p rtie d c te p blc tio n p ut êtr e repro uite

ni uti s e s u q elq e forme q e c s it et p r a c n pro é é, éle troniq e o mé a iq e, y c mp s la p oto o ie

et le micr ofilms, s n la c rd é rit d l EC o d Comité n tio al d l EC d p y d d ma d ur Si v u a e d s

q e tio s s r le c p r i ht d l EC o si v u d sire o te ir d s droits s p léme tair es s r c te p blc tio , uti s z

le c ord n é s ci-a r ès o c nta te le Comité n tio al d l EC d v tr ep y d résid n e

Th Intern tio al Ele trote h ic l Commis io (IEC) is th le din glo al org niz tio th t pr ep res a d p bls e

Internatio al Sta d r ds for al ele tri al ele tr onic a d relate te h olo ie

Abo t IEC p blc tio s

Th te h ic l c nte t of IEC p blc tio s is k pt u d r c n ta t r eview b th IEC Ple s ma e s re th t y u h v th

late t e itio ,a c rrig n a or a ame dme t mig t h v b e p bls e

IEC Cat alo ue - webst ore.e ch/ cat alo ue

Th st an -alo e a plc t io for c n ultin th e tire

biblo ra hic l informat io o IEC Intern tio al Sta d rd ,

Te h ic l Sp cific tio s, Te h ic l R ep rts a d oth r

d c me ts A v aia le for P , Ma OS, A ndroid Ta let s a d

iPa

IEC p blc t i ns s arch - www ie ch/ se rch u

Th a v an e s arc e a le to fin IEC p blc t io s b a

variety of crit eria (efere c n mb r, t ext, t ec nic l

c mmitt e,…) It als gives informatio o projec t s, re la e

a d wit hdrawn p blc tio s

IEC Just P blshed - webst ore.e ch/ just pu lshed

St ay u to d te o al n w IEC p blc t io s Ju t Pu ls e

d t ais al n w p blc t io s rele s d A v aia le o ln a d

als o c a mo t h b emai

Ele t ro edia - www ele t ro edia.org

Th world's le din o ln dic t io ary of elec t ro ic a d

ele t ric l t erms c nt ainin more th n 3 0 0 terms a d

d finitio s in En ls a d Fre c , wit h e uiv ale t t erms in 15

a ditio al la g a e Als k nown a t he Int ern t io al

Elec t rot ec nic l Vo a ulary (IEV ) o ln

IEC Glos ar y - st d.e ch/ glos ary

More t ha 6 0 0 ele t rot ec nic l termin lo y e t rie in

En ls a d Fre c e tra t ed fom t he Terms a d Definitio s

cla s of IEC p blc t io s is u d sin e 2 0 Some e t rie

h v e b e c le t ed fom e rler p blc tio s of IEC TC 3 ,

7 ,8 a d CISPR

IEC Cust omer Servic Cent re - webst ore.ec ch/ csc

If y ou wis to giv e u your fe d a k o t his p blc tio or

n e furt her a sist an e, ple s c nt act h Cu t omer Serv ic

Ce t re:c c@ie c

A pro os de l'IEC

L Commis io Ele trote h iq e Inter natio ale (IEC) e t la premièr e orga is tio mo diale q i éla or e et p ble d s

Norme internatio ale p ur to t c q i a trait à léle tri ité,à léle tr oniq e et a x te h olo ie a p re té s

A pro os de p blc t i ns IEC

L c nte u te h iq e d s p blc tio s IEC e t c n tamme t rev Ve i e v u a s r er q e v u p s é e lé itio la

plu r éc nte, u c r rig n um o ame d me t p ut a oir été p blé

Cat alo ue IEC - webst ore.e ch/ cat alo ue

Applc t io a t on me p ur c n ult er t ou le re s ig eme t s

biblo ra hiq e s r le Norme intern t io ale ,

Sp cific t io s t ec niq e , R ap ort s te h iq e et a tre

d c me ts d l EC Dis o ible p ur P , Ma OS, t ablett es

A ndroid et iPa

Recherche de p blc t i ns IEC - w ww ie ch/ se rch u

L re h rc e avan é p rmet d t ro ver d s p blc tio s IEC

e uti s nt difére t s crit ère (n méro d référe c , t exte,

c mit é d’ét ud s,…) Ele d n e a s i d s informatio s s r le

projets et le p blc t io s remplac ée o retiré s

IEC Just P blshed - webst ore.e ch/ just pu lshed

R este informé s r le n uvele p blc t io s IEC Ju t

Pu ls e d tai e le n uv ele p blc t io s p ru s

Dis o ible e lg e et a s i u e fois p r mois p r emai

Ele t ro edia - www.ele t ro edia.org

L premier dic t io n ire e lg e d t erme éle tro iq e et

éle triq e I c ntie t plu d 3 0 0 terme et d finit io s e

a glais et e fa ç is, ain i q e le terme é uiv ale t s d n

15 la g e a ditio n le Eg leme t a p lé Vo a ulaire

Elec trote h iq e Int ern tio al (IEV) e lg e

Glos aire IEC - st d.e c h/ glos ar y

Plu d 6 0 0 e t ré s t ermin lo iq e élec t rot ec niq e , e

a glais et e fa ç is, e traite d s art icle Terme et

Définit io s d s p blc tio s IEC p ru s d p is 2 0 Plu

c rt ain s e tré s a t érie re e traite d s p blc t io s d s

CE 3 , 7 , 8 et CISPR d l EC

Serv ic Clent s - w ebst ore.e c h/ cs

Si vou d sire n u d n er d s c mme taire s r c tt e

p blc t io o si v ou av ez d s q e t io s c nt ac t ez-n u :

Trang 3

Syst èmes et équipement s élect roniques de puiss nce – Conditions de

fonct ionnement et caract érist iques des convert isseurs à al ment at ion act ive

(AIC), y compris les recommandat ions de concept ion pour leurs valeurs

d'émis ion inférieure à 150 kHz

W arnin ! Mak e s re that you o tain d this publc tion from a a t horize distributor

At te tion! V eui ez vou a s rer q e vou a ez o te u c t te publc t ion via u distribute r a ré

c olour

inside

Trang 4

FOREWORD 9

INTRODUCTION 1

1 Sco e 12 2 Normative ref eren es 12 3 Terms an def i ition 13 4 General s stem c aracteristic of PWM active infe d con erters con ected to the p wer s p ly network 18 4.1 General 18 4.2 Basic to ologies an o eratin prin iples 18 4.2.1 General 18 4.2.2 Op ratin prin iples 18 4.2.3 Eq ivalent circ it of an AIC 2

4.2.4 Fi ters 21

4.2.5 Pulse p tern 21

4.2.6 Control method 2

4.2.7 Control of c r ent comp nents 2

4.2.8 Active p wer f actor cor ection 2

4.3 AIC ratin 2

4.3.1 General 2

4.3.2 Con erter ratin u der sin soidal con ition 2

4.3.3 Con erter ratin in case of harmonic c r ents 2

4.3.4 Con erter ratin u der d namic con ition 2

5 Electromag etic comp tibi ty (EMC) con ideration for the u e of AICs 2

5.1 General 2

5.2 L w-f req en y phenomena (<15 kHz) 2

5.2.1 General 2

5.2.2 Emergin con erter to ologies an their ad antages for the p wer s p ly network 2

5.2.3 Active eq al zin of the p wer s p ly network 2

5.2.4 Me s red p wer s p ly network imp dan es in the ran e b twe n 2 kHz to 2 kHz 3

5.2.5 Pro osal of an a pro riate l ne imp dan e sta i sation network (LISN) f rom 2 kHz to 9 kHz 3

5.2.6 Ef fects on in u trial eq ipment in the f req en y b n 2 kHz to 9 kHz 41

5.3 Hig -req en y phenomena (> 15 kHz) 4

5.3.1 General 4

5.3.2 Mitigation of distortion 4

5.3.3 Immu ity 4

5.3.4 EMI f ilters 4

5.4 Au ible noise ef fects 4

5.5 L akage c r ents 4

5.6 Asp cts of s stem integration an dedicated tests 4

6 Characteristic of a PWM active infe d con erter of voltage source typ an two level to olog 4

6.1 General 4

Trang 5

6.3 Power control 4

6.4 Dy amic p rorman e 5

6.5 Desired non-sin soidal l ne c r ents 5

6.6 Un esired non-sin soidal l ne c r ents 5

6.7 Avai a i ty an s stem asp cts 51

6.8 Op ration in active fiter mode 5

7 Characteristic of a PWM active infe d con erter of voltage source typ an thre level to olog 5

7.1 General f un tion, b sic circ it to ologies 5

7.2 Power control 5

7.3 Dy amic p rorman e 5

7.4 Un esired non-sin soidal l ne c r ents 5

7.5 Avai a i ty an s stem asp cts 5

8 Characteristic of a PWM Active Infe d Con erter of Voltage Source Typ an Multi L vel To olog 5

8.1 General f un tion, b sic circ it to ologies 5

8.2 Power control 5

8.3 Dy amic p rorman e 5

8.4 Power s p ly network distortion 5

8.5 Avai a i ty an s stem asp cts 5

9 Characteristic of a F3E AIC of the Voltage Source Typ 5

9.1 General f un tion, b sic circ it to ologies 5

9.2 Power control an l ne side f ilter 5

9.3 Dy amic p rorman e 61

9.4 Harmonic c r ent 61

10 Characteristic of an AIC of Voltage Source Type in Pulse Cho p r To olog 6

10.1 General 6

10.2 General f un tion, b sic circ it to ologies 6

10.3 Desired non-sin soidal l ne c r ent 6

10.4 Un esired non-sin soidal l ne c r ent 6

10.5 Rel a i ty 6

10.6 Per orman e 6

10.7 Avai a i ty an s stem asp cts 6

1 Characteristic of a two level PWM AIC of c r ent source typ (CSC) 6

1 1 General 6

1 2 General f un tion, b sic con erter con ection 6

1 3 Power control 6

1 4 Dy amic p rorman e 6

1 5 Line c r ent distortion 6

1 6 Op ration in active fiter mode 6

1 7 Avai a i ty an s stem asp cts 6

An ex A (informative) 6

A.1 Control method for AICs in VSC (Voltage Source Con erter) to ology 6

A.1.1 General 6

A.1.2 Con ideration of control method 6

A.1.3 Short-circ it ride throu h fu ctional ty for decentral zed p wer infe d with AIC 7

A.1.4 F ult ride throu h mode 7

Trang 6

A.2 Examples of practical re l zed AIC a pl cation 7

A.2.1 AIC of c r ent source type (CSC) 7

A.2.2 Active infe d con erter with commutation on the d.c side (re ctive p wer con erter) 7

A.3 Detais con ernin two level an multi-level AICs in VSC To olog 7

A.3.1 Pro erties of active inf eed con erters (PWM) with dif ferent n mb r of levels 7

A.3.2 Examples of typical waveforms of AICs 7

A.3.3 Con tru tion an re l zation 7

A.4 Basic tran fer rules b twe n voltage an c r ent distortion of an AIC 7

A.5 Examples of the influen e of AICs to the voltage q al ty 7

A.6 With tan ca a i ty of p wer ca acitors toward distortion in the ran e of 2 kHz to 9 kHz 8

A.6.1 General 8

A.6.2 Catalog e inf ormation a out p rmis ible harmonic lo d 8

A.6.3 Freq en y b u daries for p rmis ible distortion levels 8

A.6.4 Freq en y sp ctrum of active inf eed con erters 8

A.6.5 Con lu ion 8

A.7 Imp ct of ad itional AIC fi ter me s res in the ran e of 2 kHz to 9 kHz 8

A.7.1 General 8

A.7.2 Example of a PDS con tel ation (AIC an CSI) 8

A.7.3 Con lu ion 8

A.8 Example of the p wer s p ly network imp dan e me s rement 8

A.8.1 General 8

A.8.2 Basic prin iple of me s rement 8

A.8.3 Harmonic comp nent injection method f or me s rement 9

A.8.4 Harmonic c r ent generation by disturbin device 9

A.8.5 Ref eren es b sed on c r ent injection by disturb n e (Method A) 9

A.8.6 Ref eren es b sed on sin soidal sin le f req en y injection (Method B) 9

An ex B (informative) 9

B.1 Basic con ideration for desig recommen ation of AICs in the ran e of 2 kHz to 9 kHz 9

B.1.1 Overview 9

B.1.2 General 9

B.1.3 With tan ca a i ty of p wer ca acitors con ected to the p wer s p ly network an recommen ation for the comp tibi ty in the f req en y ran e 2 kHz to 9 kHz 9

B.1.4 Basic con ition f or set in the ca acitor with tan ca a i ty c rve 9

B.1.5 Matc in of AIC con erters (2-L vel PWM) to diff erent p wer s p ly network con ition without overlo din the p wer ca acitor burden 9

B.1.6 Con ideration in regard to medium voltage p wer s p ly network 9

B.1.7 AIC fi terin con ideration 10

B.1.8 AIC a pro riate tec nical an economical amou t 10

B.1.9 Freq en y ran e f rom 2 kHz to 9 kHz 101

B.2 Desig recommen ation for con u ted emis ion of low voltage AICs in the

re sona le context of hig er f req en ies b twe n 9 kHz an 15 kHz 10

B.2.1 General 10

B.2.2 Data colection res lts 10

B.2.3 Con lu ion 10

Trang 7

Fig re 1 – AIC in VSC to ology, b sic stru ture 19

Fig re 2 – AIC in CSC to olog , b sic stru ture 19

Fig re 3 – Eq ivalent circ it f or the interaction of the p wer s p ly network with an AIC 2

Fig re 4 – Voltage an c r ent vectors of l ne and con erter at fu damental f equen y f or diff erent lo d con ition 2

Fig re 5 – The b sic is ues of EMC as to ls of economic 2

Fig re 6 – Typical p wer s p ly network c r ent i L ( ) an voltage u LN ( ) of a phase control ed con erter with d.c output an in u tive smo thin 2

Fig re 7 – Typical p wer s p ly network c r ent i L ( ) an voltage u LN ( ) of an u control ed con erter with d.c output an ca acitive smo thin 2

Fig re 8 – Typical p wer s p ly network c r ent i L ( ) an voltage u LN ( ) of an AIC re lzed by a PWM Con erter with ca acitive smo thin without ad itional f ilters 2

Fig re 9 – Example of at aina le active an re ctive p wer of the AIC (VSC-typ ) at diff erent l ne to l ne voltages in p r u it (with 10 % combined tran former an f ilter in u tor s ort-circ it voltage, X/R ratio = 10/1, d.c voltage = 6,5 kV) 2

Fig re 10 – Prin iple of comp n atin given harmonic in the p wer s p ly s stem by u in an AIC an s ita le control simultane u ly 2

Fig re 1 – Typical Voltage Distortion in the Line-to-Line an Line-to-Neutral Voltage generated by an AIC without ad itional fi ters (u in % an t in degre s) 2

Fig re 12 – Basic c aracteristic of the relative voltage distortion (5 th harmonic) of one AIC o erated at a pulse feq en y of 3 kHz vers s R SCe with the l ne imp dan e ac ordin to 5.2.4 3

Fig re 13 – Basic c aracteristic of the relative c r ent emis ion (5 th harmonic) of one AIC at a pulse f eq en y of 3 kHz vers s R Ce with the l ne imp dan e ac ordin to 5.2.4 31

Fig re 14 – Sin le phase electric circ it of the thre commonly u ed diff erential mode p s ive l ne fi ter to ologies for VSC an one example for p s ive dampin 31

Fig re 15 – Example of the at en ation of the VSC l ne to l ne voltage to the l ne to l ne voltage at the IPC with state of the art dif ferential mode p s ive l ne fiter to ologies 3

Fig re 16 – Con ection of the p wer s p ly network imp dan e me s rement eq ipment 3

Fig re 17 – Example of the me s red imp dan e of a low-voltage tran former u der no lo d con ition S = 6 0 kVA, u = 6,0 % 3

Fig re 18 – Me s red variation of the p wer s p ly network imp dan e over the course of a day at one location 3

Fig re 19 – Power s p ly network imp dan e with p rtly negative imaginary p rt 3

Fig re 2 – Distribution of p wer s stem imp dan e (me s red b twe n phase an neutral con u tor) in low-voltage s stems vers s f req en y 3

Fig re 21 – Statistical distribution of p sitive-seq en e imp dan e vers s f req en y in low-voltage p wer s p ly network 3

Fig re 2 – Eq ivalent circ it des ribin the p wer s p ly network imp dan e 3

Fig re 2 – Circ it to olog f or p wer s stem simulation 3

Fig re 2 – Ap roximated an me s red 5 % imp dan e c rve 3

Fig re 2 – Sin le phase circ it to olog ac ordin to IEC 610 0-4-7 u ed for l ne imp dan e sta i sation network 4

Fig re 2 – Thre -phase circ it to olog for the lne imp dan e sta i sation network 41

Fig re 2 – Imp dan e variation in the 9 % c rve of the LISN des rib d in Fig re 2 41

Fig re 2 – PDS with large d.c ca acitan e 4

Trang 8

Fig re 2 – PDS with large ca acitan e an lne in u tor 4

Fig re 3 – PDS with a large d.c ca acitan e an in u tors in the d.c l n 4

Fig re 31 – Basic EMI fi ter to olog 4

Fig re 3 – Bloc diagram of a PDS with hig f req en y EMI f ilter s stem 4

Fig re 3 – Basic i u tration of a to olog of a two level PWM voltage source AIC 4

Fig re 3 – Typical wavef orms of voltages u S1N / U LN, 1 an voltage u S12 / U LN, 1 at pulse f req en y of 4 kHz 4

Fig re 3 – Typical wavef orms of the common mode voltage u CM / U LN,1 at pulse f req en y of 4 kHz Power s p ly f eq en y is 5 Hz 4

Fig re 3 – Waveform of the c r ent i L1 / I eq at pulse feq en y of 4 kHz, relative imp dan e of u SCV,eq = 6 % 4

Fig re 3 – Bloc diagram of a two level PWM AIC 4

Fig re 3 – Distortion of the c r ent i L1 of re ctan e X eq , pulse f req en y: 4 kHz, relative re ctan e of u SCV,eq = 6 % 51

Fig re 3 – Typical voltages u L1N / U LN, 1 an u L12 / U LN, 1 at pulse feq en y of 4 kHz, relative re ctan e u SCV,eq = 6 %, R SCe 10 51

Fig re 4 – Basic to ology of a thre level AIC For a Power Drive Sy tem (PDS) the same to olog may b u ed also on the lo d side 5

Fig re 41 – Typical c rve s a e of the phase-to-phase voltage of a thre level PWM con erter 5

Fig re 4 – Example of a s d en lo d c an e of a 13 MW thre level con erter where the c r ent control ac ieves a resp n e time within 5 ms 5

Fig re 4 – Typical to olog of a flyin ca acitor (FC) four level AIC u in IGBTs 5

Fig re 4 – Typical c rve s a e of the phase-to-phase voltage of a multi-(f ou r)-level AIC 5

Fig re 4 – Distortin f eq en ies an ampl tu es in the lne voltage (me s red directly at the brid e terminals in Fig re 2 an the l ne c r ent of a multi evel (four) AIC ( ran former with 10 % s ort-circ it voltage) 5

Fig re 4 – To olog of a F E AIC 5

Fig re 4 – Line side fi ter an eq ivalent circ it for the F3E-con erter b haviour for the p wer s p ly network 5

Fig re 4 – Cur ent tran f er fu ction together with R SCe = 10 an R SCe = 7 0 an a l ne side fi ter: G(f) = i L1 / i con 5

Fig re 4 – PWM – voltage distortion over power s p ly network imp dan e f or F 3E-infe d in lu in p wer s p ly network side fi ter 6

Fig re 5 – Input c r ent sp ctrum of a 7 kW-F3E-con erter 61

Fig re 51 – Harmonic sp ctrum of the input c r ent of an F3E-con erter with R SCe = 10 61

Fig re 5 – An i u tration of a distortion eff ect cau ed by a sin le phase con erter with ca acitive lo d 6

Fig re 5 – a.c to a.c AIC pulse c o p r, b sic circ it 6

Fig re 5 – Il u tration of a con erter to olog for a c r ent source AIC 6

Fig re 5 – Typical wavef orms of c r ents an voltages of a c r ent source AIC with hig switc in f eq en y 6

Fig re 5 – Typical bloc diagram of a c r ent source PWM AIC 6

Fig re 5 – Cur ent source AIC u ed as an active f ilter to comp n ate the harmonic c r ents generated by a nonl ne r lo d 6

Trang 9

Fig re A.1 – Prin iple s etc for combined voltage- an c r ent-injectin mod lation

example f or phase leg R 71

Fig re A.2 – Example f or control ed phase c r ent d rin a voltage dip at the p wer s p ly network u in h steresis plu PWM control 7

Fig re A.3 – Typical wavef orms of electrical p wer s p ly network c r ent an voltage f or a c r ent source AIC with low switc in f req en y [3 ] 7

Fig re A.4 – Cur ents an voltages in a (semicon u tor) valve device of an AIC an a mac ine side con erter b th of the c r ent source with low pulse feq en y [3 ] 7

Fig re A.5 – Total harmonic distortion of electrical p wer s p ly network an motor c r ent [3 ] remain alway b low 8 % ( rian les in straig t l ne) in this a plcation 7

Fig re A.6 – Basic to olog of an AIC with commutation on the d.c side (six pulse variant 7

Fig re A.7 – Dy amic p rf orman e of a re ctive p wer con erter 7

Fig re A.8 – Line side c r ent f or a twelve pulse Re ctive Power Con erter in a ca acitive an in u tive o eration mode (u SCV,eq = 15 %) 7

Fig re A.9 – The origin of the c r ent waveform of a RPC by the l ne voltage (sin soidal) an the con erter voltage (rectan ular) 7

Fig re A.10 – Two level to olog with nominal voltage of maximum 1 2 0 V an times ale of 5 ms/div 7

Fig re A.1 – Thre level to olog with nominal voltage of maximum 2 4 0 V an times ale of 5 ms/div 7

Fig re A.12 – F ur level to olog with nominal voltage of maximum 3 3 0 V an times ale of 5 ms/div 7

Fig re A.13 – General influen e of sig ificant c aracteristic to the voltage distortion an c r ent distortion 7

Fig re A.14 – Me s red red ction of voltage distortion when f our AICs are con ected to the p wer s p ly network 8

Fig re A.15 – Ex erpts f rom a catalog e information of a p wer ca acitor man facturer; 7 0 V AC; (rated voltage: 6 0 V AC) f or temp rature calc lation 81

Fig re A.16 – Re ctive p wer an los es of a p wer ca acitor s p l ed by a source with con tant ref eren e voltage an varia le f eq en y (R cp = f(h) 8

Fig re A.17 – Ap arent p wer an los es of a typical p wer ca acitor at dif ferent voltage distortion levels an the critical f req en y b u daries (at sin ular feq en y) where the temp rature rise re c es s bstantial values (vertical ar ows) 8

Fig re A.18 – Voltage sp ctrum of an AIC an the imp ct of a l ne imp dan e red ction to the temp rature of the ca acitor (f om 10 K to 0,4 K) an the comp sition of the sp ctrum 8

Fig re A.19 – A win turbine plant an a mine win er drive con ected on the same p wer l ne 8

Fig re A.2 – Power s p ly network config ration for the plant of Fig re A.19 with al ocated me s rement p ints 8

Fig re A.21 – Reg lar c r ent of the CSI (AIC-i ter disa led) an ampl f i ation of the c r ent in case of resonan e cau ed by the AIC-i ter circ it (when AIC fi ter is ena led) 8

Fig re A.2 – Basic prin iple of imp dan e me s rement 8

Fig re A.2 – Harmonic c r ent generation by disturbin device 9

Fig re A.2 – Me s rement by switc in a resistor 91

Fig re A.2 – Me s rement by a ca acitor b n 91

Fig re A.2 – A 6,6 kV p wer s p ly network imp dan e me s rement s stem for islan in detection by injectin interharmonic 9

Trang 10

Fig re B.1 – With tan ca a i ty level toward harmonic voltages in the p wer s p ly

network in view of p rmis ible temp rature rise within ca acitors if the voltage

distortion is determined either by one predominatin feq en y (up er l ne) or if the

distortion is predominantly determined by a harmonic sp ctrum, cau ed by several

p ral el o erated AICs (2-L vel PWM) (lower l ne) 9

Fig re B.2 – Harmonic voltage sp ctrum of one 2-L vel PWM AIC with ac e ta le

temp rature in re se of a p wer ca acitor not ex e din 10 K 9

Fig re B.3 – Maximum voltage distortion of a sp ctrum, cau ed by several AICs

(sin le phase to ologies) 9

Fig re B.4 – Maximum voltage distortion of a sp ctrum, cau ed by several AICs ( hre

phases to ologies) 9

Fig re B.5 – Spre d he t of matc in sin le phase AICs (2-level) to diff erent p wer

s p ly network con ition in order to a ply the p wer ca acitor l mit c rves 9

Fig re B.6 – Spre d he t of matc in thre phases AICs (2-level) to diff erent p wer

s p ly network con ition in order to a ply the p wer ca acitor l mit c rves 9

Fig re B.7 – Ilu tration of the typical p wer s p ly network resonan e f eq en y by

in re sin AIC fi terin p pulation, vers s the voltage distortion level 10

Fig re B.8 – Sketc of the typical size/cost of an AIC a pl cation vers s switc in

f req en y of the AIC .101

Fig re B.9 – Ilu tration of the pro a i ty of overlo d an stres pro lems for the

p wer s p ly network an the eq ipment con ected thereto, de en in on stipulated

distortion levels fixed in mis el ane u as umption 101

Fig re B.10 – Res lts of the data col ection vers s the maximum values pro osed in

the IEC TS 6 5 8 f or prod cts rated a ove 7 kVA 10

Fig re B.1 – Res lts of the data col ection vers s the maximum values pro osed in

the IEC TS 6 5 8 f or prod cts rated b low 7 kVA 10

Fig re B.12 – Res lts of the data col ection vers s the maximum values pro osed in

the IEC TS 6 5 8 f or prod cts rated a ove 7 kVA 10

Fig re B.13 – Recommen ed maximum emis ion values for AIC of dif ferent categories

Ta le A.3 – Con ition state 0: c r ent in phase R within toleran e range, pure voltage

injection active (e.g with PWM) 71

Ta le A.4 – Comp rison of diff erent PWM AICs of VSC to olog 7

Ta le A.5 – Voltage distortion on b th p wer l nes (I an I I) without an with fiter circ it

( he fi ter had b en desig ed to ac ieve 0,2 % distortion level on the MV-p wer l ne) 8

Ta le A.6 – Cur ent distribution within the network des rib d for sp cific feq en ies

an on al ocated me s rement p ints as p inted out in Fig re A.2 8

Ta le B.1 – AIC desig recommen ation f or a maximum distortion f actor in the

f req en y ran e f rom 2 to 9 kHz 10

Ta le B.2 – Recommen ed maximum emis ion values f or AIC of dif ferent categories in

the ran e f om 9 kHz up to 15 kHz 10

Trang 11

INTERNATIONAL ELECTROTECHNICAL COMMISSION

_

Operation conditions and characteristics of active

infeed converter (A IC) appl cations including design

recommendations f or their emission values below 150 kHz

1 Th Intern tio al Ele trote h ic l Commis io (IEC) is a worldwid org niz tio for sta d rdiz tio c mprisin

al n tio al ele trote h ic l c mmite s (IEC Natio al Commite s) Th o je t of IEC is to promote

intern tio al c -o eratio o al q e tio s c n ernin sta d rdiz tio in th ele tric l a d ele tro ic f i ld To

this e d a d in a ditio to oth r a tivitie , IEC p bls e Intern tio al Sta d rd , Te h ic l Sp cif i atio s,

Te h ic l Re orts, Pu lcly Av ia le Sp cif i atio s (P S) a d Guid s (h re f ter refer e to a “IEC

Pu lc tio (s)”) Th ir pre aratio is e tru te to te h ic l c mmite s; a y IEC Natio al Commite intere te

in th s bje t d alt with ma p rticip te in this pre aratory work Intern tio al g v rnme tal a d n n

-g v rnme tal org niz tio s laisin with th IEC als p rticip te in this pre aratio IEC c la orate clo ely

with th Intern tio al Org niz tio f or Sta d rdiz tio (ISO) in a c rd n e with c n itio s d termin d b

a re me t b twe n th two org niz tio s

2) Th f ormal d cisio s or a re me ts of IEC o te h ic l maters e pre s, a n arly a p s ible, a intern tio al

c n e s s of o inio o th rele a t s bje ts sin e e c te h ic l c mmite h s re re e tatio fom al

intere te IEC Natio al Commite s

3) IEC Pu lc tio s h v th form of re omme d tio s f or intern tio al u e a d are a c pte b IEC Natio al

Commite s in th t s n e Whie al re s n ble ef forts are ma e to e s re th t th te h ic l c nte t of IEC

Pu lc tio s is a c rate, IEC c n ot b h ld re p n ible for th wa in whic th y are u e or f or a y

misinterpretatio b a y e d u er

4) In ord r to promote intern tio al u if ormity, IEC Natio al Commite s u d rta e to a ply IEC Pu lc tio s

tra s are tly to th ma imum e te t p s ible in th ir n tio al a d re io al p blc tio s An div rg n e

b twe n a y IEC Pu lc tio a d th c re p n in n tio al or re io al p blc tio s al b cle rly in ic te in

th later

5) IEC its lf d e n t pro id a y ate tatio of c nf ormity In e e d nt c rtific tio b die pro id c nformity

a s s me t s rvic s a d, in s me are s, a c s to IEC mark of c nformity IEC is n t re p n ible for a y

s rvic s c rie o t b in e e d nt c rtific tio b die

6) Al u ers s o lde s re th t th y h v th late t e itio of this p blc tio

7) No la i ty s al ata h to IEC or its dire tors, emplo e s, s rv nts or a e ts in lu in in ivid al e p rts a d

memb rs of its te h ic l c mmite s a d IEC Natio al Commite s f or a y p rs n l injury, pro erty d ma e or

oth r d ma e of a y n ture wh ts e er, wh th r dire t or in ire t, or for c sts (in lu in le al f ee ) a d

e p n e arisin o t of th p blc tio , u e of, or rela c u o , this IEC Pu lc tio or a y oth r IEC

Pu lc tio s

8) Ate tio is drawn to th Normativ refere c s cite in this p blc tio Us of th refere c d p blc tio s is

in is e s ble for th c r e t a plc tio of this p blc tio

9) Ate tio is drawn to th p s ibi ty th t s me of th eleme ts of this IEC Pu lc tio ma b th s bje t of

p te t rig ts IEC s al n t b h ld re p n ible f or id ntif yin a y or al s c p te t rig ts

The main tas of IEC tec nical commite s is to pre are International Stan ard In

ex e tional circ mstan es, a tec nical commit e may pro ose the publ cation of a tec nical

sp cification when

• the req ired s p ort can ot b o tained for the publ cation of an International Stan ard,

despite re e ted ef forts, or

• The s bject is sti u der tec nical develo ment or where, for an other re son, there is

the future but no immediate p s ibi ty of an agre ment on an International Stan ard

Tec nical sp cif i ation are s bject to review within thre ye rs of publ cation to decide

whether they can b tran formed into International Stan ard

IEC TS 6 5 8, whic is a tec nical sp cification, has b en pre ared by IEC tec nical

commit e TC 2 : Power electronic s stems an eq ipment

Trang 12

This secon edition can els an re laces the f irst edition publs ed in 2 0 This edition

con titutes a tec nical revision

This edition in lu es the f ol owin sig if i ant tec nical c an es with resp ct to the previou

edition:

a) IEC TS 6 5 8, in its revised version in lu es o served values out of practical a pl cation

for emis ion values b low 15 kHz

b) Therefore the doc ment has b en exten ed comp red to the f irst edition, several detai ed

analy is res lts are given in the exten ed An exes

c) Desig recommen ation have b en derived f om the international workin group by an

as es ment of the p wer s p ly imp dan es b twe n 2 kHz an 9 kHz, a comprehen ive

analy is of the with tan ca a i ty of p wer ca acitors again t harmonic c r ents injected

by AIC, immu ity tests of eq ipment an con ideration a out s ifted resonan es in the

p wer s p ly network with in re sed p pulation of u damp d fi ter ca acitors

The text of this tec nical sp cification is b sed on the fol owin doc ments:

En uiry draft Re ort o v tin

Ful information on the votin for the a proval of this tec nical sp cification can b f ou d in

the re ort on votin in icated in the a ove ta le

The Fren h version of this tec nical sp cif i ation has not b en voted up n

This publ cation has b en draf ted in ac ordan e with the ISO/IEC Directives, Part 2

The commit e has decided that the contents of this publ cation wi remain u c an ed u ti

the sta i ty date in icated on the IEC we site u der "ht p:/we store.iec.c " in the data

related to the sp cific publ cation At this date, the publ cation wi b

• tran formed into an International stan ard,

• reconfirmed,

• with rawn,

• re laced by a revised edition, or

• amen ed

IMPORTANT – Th 'colour inside' logo on the cover pa e of this publ c tion indic te

that it contains colours whic are consid re to be us f ul f or the cor e t

und rsta din of its conte ts Us rs s ould theref ore print this doc me t usin a

colour printer

Trang 13

This revision of the tec nical sp cification IEC TS 6 5 8 is neces ary b cau e active infe d

con erters (AIC) are a state of the art tec nolog in p wer electronic prod cts an wi b of

major imp rtan e in order to re lze the "smart grid" an the "energ eff i ien y" initiatives

AICs in in u trial an domestic u e are neces ary to f eedb c energ fom an energy source

(e.g solar p nels, fuel cel s or win turbines) or f om a motor lo d to the p wer s p ly

network an make it avai a le f or other con umers in te d of dis ip tin it as a waste-he t to

the en ironment

Disp rsed p wer generatin eq ipment u es AICs to s n hronise their voltages an c r ents

to the p wer s p ly network or to ex han e electrical energ b twe n energ storage devices

s c as b teries an con umers

Uti ties wi req ire information on how to cor ectly a ply the AICs in order to mitigate

harmonic in the p wer s p ly network

AICs can also b u ed to mitigate pre-existin harmonic in the s p ly s stem – inf ormation

on this is of interest to uti ties

Diff erent p s ible to ologies of AICs are des rib d together with their sp cific ad antages

Warnin : The recommen ation of maximum emis ion values for con u ted emis ion

<15 kHz def i ed in this doc ment are b sed on o servation an exp rien e gained f rom

state of the art AICs o eratin today in most p wer s p ly network together with other

eq ipment without cre tin intolera le intereren e an s ould le d to an in re sed

ac e tan e of u in AICs

Nevertheles it has to b hig l g ted that electromag etic en ironment is s bject to c an es

e.g b cau e of smart grid de loyment an that emis ion lmits that are c r ently u der

develo ment by the IEC EMC Commite s may b diff erent to the maximum emis ion values

recommen ed in this doc ment

This doc ment is b in is ued in the Tec nical Sp cification series of publ cation (ac ordin

to the ISO/IEC Directives, Part 1, 3.1.1.1) as a “prosp ctive stan ard for provisional

a pl cation” in the field of p wer electronic b cau e there is an urgent ne d for g idan e on

the desig an u e of active infe d con erters (AIC) today an in “smart grid en ironments”

It remain u cle r d rin revision of this doc ment, how an when the smart grid vision wi

b re l zed an to what extent in the f uture AICs wi b the "key l n comp nents" if several

electrical energ storage devices or storage tec nologies an energ u ers are to b

con ected together an wi interact u der "smart grid b haviour condition The p wer

s p ly network may ada t its future c aracteristic comp red to the state of the art whie

in re sin the in tal ed den ity of AIC

Trang 14

POWER ELECTRONICS SYSTEMS A ND EQUIPMENT –

Operation conditions and characteristics of active

infeed converter (A IC) appl cations including design

recommendations f or their emission values below 150 kHz

This Tec nical Sp cification IEC TS 6 5 8 des rib s the o eration con ition an typical

c aracteristic of active inf eed con erters (AIC) of al tec nologies an to ologies whic can

b con ected b twe n the electrical p wer s p ly network (lnes) a.c side an a con tant

c r ent or voltage typ d.c side an whic can con ert electrical p wer (active an re ctive)

in b th direction (generative or regenerative)

Ap lcation with active inf eed con erters are commonly u ed with the d.c sides of adju ta le

sp ed p wer drive s stems (PDS), u inter uptible p wer s stems (UPS), active f ilters,

photovoltaic s stems, win turbine s stems, b t ery b c ed p wer management s stems etc

of al voltages an p wer ratin s

Active infe d con erters are general y con ected b twe n the electrical p wer s p ly network

(a.c side) an a c r ent or voltage d.c side, with the o jective to avoid emit in low

f req en y harmonic (e.g les than 1 kHz) by s nthesizin a sin soidal a.c c r ent Some of

them can ad itional y comp n ate the pre-existin harmonic distortion of a given s p ly side

voltage They are more ver a le to control the p wer factor of a p w er s p ly network sect ion

by movin the electrical p wer (active an re ctive) in b th direction (generative or

regenerative), whic ena les energ savin in the s stem an sta i zes the p wer s p ly

voltage or ena les coupl n of renewa le energ sources or electrical energy storage devices

to the s p ly

A practical an analytical a pro c for emis ion values f or AICs in p wer s p ly network is

given, whic is b sed on the latest res lts f or l ne imp dan e values b twe n 2 kHz an

9 kHz an with tand ca a i ty of ca acitors con ected directly to the s p ly

This res lts in desig recommen ation f or emis ion values b low 15 kHz

The fol owin is ex lu ed f rom the s o e

• Req irements f or the desig , develo ment or f urther fu ctional ty of active infe d

a pl cation

• Pro a i ty of interaction or influen es of the AIC with other eq ipment cau ed by

p rasitic elements in an in tal ation or cau ed by p or electronic desig as wel as their

mitigation

• "Overhe d l ne" p wer s p ly network b cau e of lac of inf ormation (me s rements) of

their thre phase imp dan es This could b the s bject for f uture edition

The f ol owin doc ments, in whole or in p rt, are normatively ref eren ed in this doc ment an

are in isp n a le f or its a pl cation For dated ref eren es, only the edition cited a ples For

u dated referen es, the latest edition of the referen ed doc ment (in lu in an

amen ments) a pl es

Trang 15

IEC 6 0 0 (al p rts), Intern tion l Electrotec nic l Vo a ulary (avaiable at

IEC TR 6 7 5:2 12, Co sid eration of refere c imp d an es a d p bl ic su ply n twork

imp da c s for use in det erminin t he d isturb n e c ara teristics of el ectric l e uipme t

h ving a rated c r e t ≤7 5 A p r p ase

IEC 618 0-3, Ad just able sp ed ele tric l p wer driv systems – Part 3: EMC re uireme ts

a d sp cific t est meth ds

IEC 618 0-5-1, Adjusta le sp ed ele tric l p wer driv syst ems – Part 5-1: Safety

re uireme ts – Ele tric l, thermal a d e erg

IEC 6 0 0-1, Uninteru tibl e p wer systems (UPS) – Part 1: Ge eral a d safety re uirements

for UPS

IEC 6 10 , Ele tro ic e uipme t for use in p wer install ations

IEC 610 0-4-7:2 0 , Electroma n t ic c mp tibil ity (EMC) – Part 4-7: Test ing a d

me sureme t te h iq es – Ge eral g ide o h rmo ics a d int erh rmo ics me sureme ts

a d instrume t at ion, for p wer su ply systems a d e uipme t c n e t ed t hereto

Note 1 to e try: Sp cific main a plc tio s in lu e:

• re u e or a oid emitin low f re u n y h rmo ic (e.g le s th n 2 kHz) fom th p wer s p ly n twork b

s nth sizin a sin s id l ln c re t

• c ntrib te to c ntrol n th re ctiv p wer of a p wer s p ly n twork

• e c a gin th ele tric lp wer (a tiv a d re ctiv ) in g n rativ or re e erativ mo e

• sta i z tio of th p wer s p ly v lta e a d e erg s vin in th s p ly s stem

• e c a gin ele tric l e erg b twe n p wer s p ly n twork or oth r p wer g n ratio s a plc tio s lk fu l

c ls a d ele tric l e erg stora e d vic s

• c u ln of d c ntralz d p wer s urc s (e.g f rom re ewa le e erg ) to th p wer s p ly n twork

3.2

a.c f ilter

f ilter con istin of p s ive comp nents, s c as in u tors, ca acitors an resistors con ected

to the a.c side of a con erter, desig ed to red ce the circ lation of harmonic c r ents in the

as ociated s stem

3.3

a tiv f ilter

AIC o eratin as a f ilter to control the sp cif i a.c side harmonic an interharmonic voltages

or c r ents u ual y without active p wer f low

Trang 16

selfcommutated electronic p wer con erters of al tec nologies, to ologies, voltages an

sizes whic are con ected b twe n to the a.c p wer s p ly network (l nes) an u ual y a stif

d.c side (c r ent source or voltage source) an whic can con ert electric p wer in b th

direction (generative or regenerative) an whic can control the re ctive p wer or the p wer

Note 3 to e try: In IEC 6 0 0-5 1 th s terms (VSC a d CSC) are d f i e a v lta e stif f a.c./d.c c n erter

(5 1 12-0 ) a d c re t stif f a.c./d.c c n erter (5 1 12-0 ) Mo t of th AICs are bi-dire tio al c n erters a d

h v s urc s o th d.c sid So, th y are k own a v lta e s urc c n erters a d c re t s urc c n erters in

control able harmonic or interh rmonic

set of harmonic or interharmonic whic can b influen ed directly by the control strateg of

the AIC

3.8

con e tional conv rter

con erter b sed on lne commutation tec nolog , that can ot control p wer factor or

harmonic

3.9

con erter topology

dif ferent p s ible ar an ements of semicon u tor valves an their con ection

ef fe tiv s p ly-side f ilter impe a c

eff ective imp dan e of the s p ly-side f ilter of the AIC f or f eq en ies in the ran e of the

control a le harmonic or interharmonic

Trang 17

3.13

e id ntial per unit s pply side impe a c of the AIC

u

s v,eq

p r u it s ort-circ it voltage drop value of the hardware in u tan e whic is con ected

b twe n the AIC an the p wer s p ly network

u

s v,e u

= Z

c o e / (U

LN/ I

q)

3.14

f un ame tal a d harmonic comp ne ts

defined in IEC 6 0 0:101, IEC 6 0 0:161 an IEC 6 0 0:5 1, resp ctively an are dedicated

for the AIC in this doc ment

3.15

F3E-inf ee

f undame tal f re ue c f ront e d infe d

fu damental f req en y font en voltage source con erter with its commutation ca acitor on

the a.c side whic u es l ne-f req en y switc ed semicon u tor valve devices an has

regenerative ca a i ty

Note 1 to e try: Th d.c.-ln c p citor whic is n rmaly a ele trolytic c p citor is b sic ly re la e b a a.c

ln sid f ilter, d sig e to lmit th v lta e distortio c u e b th PWM c re ts of th in erter sta e

3.16

ge erate harmonic or interharmonic

set of harmonic or interharmonic whic res lt f om the pulse f eq en y an the pulse

p tern

3.17

in-pla t point of coupl ng

IPC

p int on a network in ide a s stem or an in tal ation, electrical y ne rest to the AIC, at whic

other a p ratu are, or could b , con ected

Note 1 to e try: Th IP is u u ly th p int for whic ele troma n tic c mp tibi ty is to b c n id re In c s

of c n e tio to th p blc s p ly s stem th IP is e uiv le t to th P C (Point of Commo Co pln )

3.18

k

zred

ratio of the p wer s p ly imp dan e ac ordin to 5.2.4 (9 % values) related to the f req en y

pro ortional extra olated referen e imp dan e ac ordin IEC 6 7 5

3.19

l n impe a c of ph s x

Z

L , h

l ne imp dan e of phase x at harmonic order h

Note 1 to e try: Th imp d n e at a h rmo ic f re u n y b twe n th star p int of th e uiv le t p wer s p ly

a d o e of th p a e termin ls at a d f i e p int o a n twork Th p int o a n twork c uld b d f i e to b f or

e ample th termin ls of th AIC or th in-pla t p int of c u ln

3.2

lon - ime e ergy stora e de ic

device con ected to the d.c.-l n directly or by a semicon u tor valve device, or a c n erter,

providin rated p wer f or typical y secon s to min tes

Trang 18

PWM control e conv rter

con erter u in a pulse-width mod lation tec niq e in order to control the switc in of its

semicon u tor valve devices

3.2

puls fre ue c

f req en y, res ltin fom the switc in f req en y an the con erter to olog , whic

c aracterizes, together with the selected pulse p t ern, the lowest feq en y of non

-control a le harmonic or interharmonic at the IPC (in-plant p int of coupl n )

Note 1 to e try: Th switc in f re u n y its lf ma n t b pre e t a a h rmo ic or interh rmo ic

3.2

puls pat ern

p tern of the switc ed voltages or c r ents, me s ra le at the terminal of the con erter,

res ltin fom pulse f eq en y an mod lation s hemes u ed

rea tiv power conv rter

c n erter f or re ctiv p wer c mp nsatio th t g n rates or c nsumes re ctiv p wer with ut th f low

of a tiv p wer e c pt f or th p wer los es in th c n erter

/ Z

Lx,1

wh re

Trang 19

s ort circ it ratio

R

SCe

c aracteristic value for the a plcation of a sin le eq ipment derived f om the Ratio of s

ort-circ it p wer of the s p ly to the rated a p rent p wer of the AIC of the sin le eq ipment

(S

e u)

R

SCe

= S

SC / S

e u) f or interphase eq ipment

R

SCe

= S

SC / 3* S

e u) f or sin le p ase e uipme t

3.2

s ort time e ergy stora e de ic

one or more in u tors or ca acitors providin rated p wer for a out 1 ms to 10 ms an

directly con ected to the d.c side

Note 1 to e try: Sh rt time e erg stora e is u e to h v a stif f v lta e or c r e t c ara teristic or o erate th

AIC c ntin aly in s ort time a.c v lta e dip, a d time c uld b more th n 10 ms

Note 2 to e try: L n -time e erg stora e is u e to pro id e erg to a.c p wer s stem

3.3

switc ing fre ue c

f req en y with whic the semicon u tor valve devices of a PWM con erter are o erated

Note 1 to e try: In s me c n erters th switc in fe u n y ma n t b th s me for al s mic n u tor v lv

LN, 1

relative voltage (l ne to neutral voltage) at order h

Note 1 to e try: ratio of a h rmo ic ln to n utral v lta e ampltu e to th fu d me tal fe u n y ln to n utral

v lta e ampltu e

3.3

U

L , h/ U

actual res ltin re ctan e of the p wer s p ly network at the IPC

Note 1 to e try: Th in e “h” me n in a y c s th t th d dic te re cta c is c n id re at a c rtain h rmo ic

ord r

Trang 20

Z

L, h

actual res ltin imp dan e of the p wer s p ly network at the IPC

Note 1 to e try: For h rmo ic c lc latio for a sin le p a e lo d: Z

L

= Z

Lx+ Z

Active Inf eed Ap l cation are mainly avaia le with ca acitive (VSC) or in u tive (CSC)

smo thin on the d.c side Some con erter con e ts u e no or ne rly no d.c.-side smo thin

The majority of in tal ed u its uti ze ca acitive smo thin

De en in on the rated p wer an the p wer s p ly network avai a i ty the con ection to the

p wer s p ly network may b sin le-phase or thre -phase The thre -phase version is

selected f or the examples

4.2.2 Operatin principle

The main o eratin prin iple is to switc the d.c.-side p tentials or the d.c.-side c r ents to

the a.c side con u tors with a pulse f req en y of normal y b twe n 3 0 Hz an 2 kHz In

this way the desired voltages or c r ents on the a.c side are re l sed as me n values The

pulse f req en y is normal y hig comp red to the l ne f req en y an al ows q ic an

ac urate control of the voltages an c r ents on the a.c side However, switc in b twe n

f i ed p tentials or c r ents generates u desira le distortion in the high f req en y ran e

Pas ive a.c-side fiters mig t b req ired to mitigate those

A control s stem al ows a precise control of the f un amental an ad itional harmonic

comp nents The feq en y up to whic harmonic can b control ed is determined by the

pulse feq en y of the con erter

The u ual stru ture of VSC an CSC s stems is s own in Fig re 1 an Fig re 2, resp ctively:

Trang 21

NOT Th v lv d vic s mb ls are u e merely for i u tratio

Figure 1 – AIC in VSC topology, ba ic structure

NOT Th v lv d vic s mb ls are u e merely for i u tratio

Figure 2 – AIC in CSC to ology, ba ic stru ture

Fig re 1 an Fig re 2 s ow that the stru ture of voltage an c r ent source con erter s stems

is very simi ar The main diff eren es can b fou d on the d.c side, the a.c side f ilters an in

the typ of semicon u tors u ed for the valve device p rt of the converter Detai s can b

fou d in the section coverin the diff erent to ologies

The stru ture can b se arated into thre p rts

• Sup ly imp dan e at the internal p int of coupl n (IPC) (se Fig re 2) whic is mainly

in u tive

• Con erter an control up to the d.c side This p rt u ual y contain an a.c side fiter,

IEC

IE C

Trang 22

tran f ormer, if u ed, is p rt of (or desig ed to b u ed as) the s p ly-side f ilter c oke

Next in the c ain is the valve device p rt, whic may vary in stru ture – se the f olowin

s bclau e on diff erent to ologies as wel as on the d.c.-side lo d c aracteristic (ca acitive

smo thin or in u tive smo thin ) The control typical y u es pulse width mod lation

prin iples lke sp ce vector modulation, o timised s n hronou pulse p tern or

h steresis or sl ding mode control for pulse p tern generation In case of sp ce vector

mod lation the pulse feq en y is f i ed In case of o timised s n hronou pulse p t ern

the pulse pat ern normal y has a fixed s a e an is s n hronou with resp ct to the l ne

feq en y

• L ad side The majority of eq ipment con ected are variou energy sources or PWM

-con erter fed mac ines Another typical a pl cation are con erters to fe d p s ive or

mixed lo d , as for example in u inter uptible p wer s stems (UPS) If the AIC is u ed f or

p wer f actor comp n ation or harmonic control the lo d is not req ired, but can b

in luded In case of voltage source con erters lon -term energ storage u its may easiy

b con ected in p ral el with the d.c.-side smo thin ca acitor In typical a pl cation the

d.c.-side smo thin ca acitor s p les the rated p wer for a out 1 ms to 10 ms without

trip in of the con erter The lon -term storage may typical y provide rated p wer for

secon s to min tes

4.2.3 Equiv le t circ it of a AIC

The stationary b haviour of AICs is b st des rib d u in the eq ivalent circ it con istin of

eq ivalent sources an imp dan es given in Fig re 3

Figure 3 – Equiv le t circ it f or the intera tion of the power s p ly n twork with a AIC

For b t er u derstan in it is ad antage u to se arate the p wer s p ly network voltages

an the con erter voltages into their f un amentals an the remainin harmonic For the

con erter voltages, two sets of harmonic voltages may b distin uis ed

• One set of harmonic whic can b control ed directly This set is defined as control a le

or desired harmonic an c aracterised by the in ex ν

• One set of harmonic res lts f rom the pulse f req en y an the pulse p tern This set is

defined as u desired (generated) harmonic an c aracterised by the in ex µ

The voltage U

s, h

is the s p rp sition of al (desired an u desired) harmonic cau ed by al

IEC

Trang 23

NOT Simiar c n lu io s c n b drawn c n ernin c r e t s urc AICs In this c s th s t of v lta e in

Fig re 3 h s to b re la e b a s t of c re ts

4.2.4 Fi ters

The s p ly side fi ter is u ual y desig ed to let the desired harmonic p s throu h the fi ter

an to mitigate the u desired harmonic to a value pres rib d by the EMC sp cification of

the en ironment If neces ary, ad itional fiter me s res may b a pl ed

Ad itional desig criteria may res lt f rom the p wer s p ly s stem con ition at the IPC as

wel as f rom economic con traints

It s ould b noted that the f req en y of the u desired harmonic is mainly f rom pulse

f req en y on upward The sp cification of the con erter side fi ter in u tor has to take these

hig f eq en ies into ac ou t, otherwise the in u tor wi overhe t

The d.c.-side fi ter, if u ed, has to at en ate the rip le of the d.c voltage or c r ent so that the

con erter an the p s ibly con ected devices fu ction pro erly The sp cification of the d.c

-l n fiter has to take the amou t of harmonic into ac ou t, otherwise it may overhe t

In some cases the energ -storage ca a i ty of the d.c.-side fi ter is ada ted to the dy amic

req irements of the a pl cation One a pl cation is the ride-throu h (contin e o eration d rin

an af ter a s ort inter uption of the p wer s p ly network) Ra id c an es of the energ flow

in the p wer s pply network or the lo d d rin p wer tran ients also ne d larger d.c side

energ storage elements otherwise the c aracterisin d.c.-l n q antity (voltage or c r ent

may le ve the toleran e b n in whic pro er o eration of the PWM con erter is g arante d

An overs o t of voltage or c r ent, even for a very s ort time, may destroy the semicon u tor

valve devices of the con erter

For the fu damental f req en y an the control a le harmonic , the s p ly-side fi ter may b

regarded as purely in u tive De en in on the to olog an the c osen control prin iple, the

voltage dro acros the total imp dan e drives the s p ly-side c r ent

The total imp dan e s ould b l mited to al ow pro er d namic control of the s p ly side

c r ent

4.2.5 Puls pat erns

The selected pulse p tern generation s heme gre tly in uen es the c aracteristic of the

con erter The thre main b sic p tern generation s hemes are sp ce vector mod lation,

o timized s n hronou pulse-width mod lation an l ne f l x g idan e

NOT Sp c v ctor mo ulatio a d s mmetric p ls width mo ulatio le dto id ntic l p ls p tern

In case of sp ce-vector mod lation a seq en e of zero states an non-zero voltage sp ce

vectors is selected in s c a way that the voltage sp ce vector req ested by the control

res lts as a me n value of the seq en e The zero states selected have to b of eq al

d ration

In case of s mmetric pulse-width mod lation, a set-p int c rve is comp red to a trian ular

ref eren e f un tion Two way of tre tin the set-p int c rve are k own:

• natural sampl n directly comp res the (analog e) c rve to the trian ular ref eren e

fu ction;

• reg lar sampl n samples values of the set p int c rve at the extreme values of the

trian ular f un tion an comp res these sampled values to the ref eren e fu ction

Digital control ers normal y u e reg lar samplng The dif feren e b twe n the two method is

smal but le d to sl g tly diff erent generated harmonic

Trang 24

A s ita le in tantane u ly defined zero-seq en e comp nent ad ed to the ref eren e values

as ures eq al zero-state d ration This is sometimes cal ed “ad ition of multiple of third order

harmonic" If the half value of the me n of the thre phase sig al is ad ed to al sig als, the

res lt is identical to sp ce vector mod lation

4.2.6 Control methods

A b sic introd ction into control method is des rib d in Clau e A.1 More detai ed

des ription can b f ou d in the referen es

4.2.7 Control of c r e t comp ne ts

The AIC gives the p s ibi ty to adju t the fu damental an controla le harmonic comp nents

f ed into or taken fom the l ne This f eature ef fectively can b u ed f or mitigation purp ses As

a secon ary ef fect, hig f req en y distortion is generated, whic mig t have to b mitigated

by a s ita le fiter

The lne voltage given by Fig re 3 is normal y u k own, as is the l ne imp dan e that may

c an e without notice, de en in on the actual l ne config ration, in lu in other lo d

atac ed Theref ore, control s hemes are u ual y b sed on the me s ra le voltage at the IPC

(se Fig re 1 an Fig re 2) In ad ition, d.c l n q antities are me s red

The flexibi ty of AICs an as ociated control s hemes off er a large variety of a pl cation an

as ociated control s hemes The main o jectives are, however, control of active p wer an

control of re ctive p wer or non-active (vector s m of re ctive plu harmonic ) p wer The

desired b haviour can b ac ieved by control n the c r ents cau ed by the AIC Referen es

for the active, re ctive, non-active an purely harmonic c r ents have to b derived fom the

l ne voltages

One p s ibi ty to define the referen e f or the c r ent is to u e resistive lo d emulation

Energ is then f ed to the d.c l n f rom every avai a le s p ly voltage comp nent, th s ad in

dampin f or u desira le comp nents If the voltages at the IPC are non-sin soidal, the lne

c r ents wi b con eq ently non-sin soidal, to

The drawb c of resistive lo d emulation is that it may b come un ta le an in re se

harmonic if an at empt is made to fe d energ to the s p ly f rom the d.c l n In this case

energ s ould b del vered to the s p ly only via the fu damental comp nent of the c r ent

4.2.8 A ctiv power fa tor cor e tion

This con ideration is b sed on f un amental f req en y comp nents des rib d by vectors

Adeq ate control of the lne-side con erter voltage U

C

al ows the voltage U

Lacros the

eff ective s p ly-side fi ter imp dan e to b adju ted to a desired value This voltage then

cau es the desired l ne c r ent I

L

to f low In this way the AIC is a le to impres an desired

amou t of re ctive c r ent, in lu in zero – an cau e an desired amou t of re ctive p wer,

in lu in zero – in ide its sp cif i ation The con erter can th s b u ed as a comp n ator to

maintain a certain voltage level in the a.c side s p ly by ad itional y impres in ca acitive or

in u tive c r ents

For an ide l active p wer factor cor ection the c r ents of the fi ter in u tan es are orthogonal

( hey lag or le d by 9 ˚ to the resp ctive s p ly voltages Examples of vector diagrams are

s own in Fig re 4

Trang 25

NOT P C in this c s c n als b re la e b IP

Figure 4 – Volta e a d c r e t v ctors of l ne a d con erter

at fun ame tal fre ue c f or dif fere t loa condition

It is o viou that the l ne-side con erter voltage has to b larger than the voltage at the IPC in

man cases, de en in on the o eration p int This has to b taken into ac ou t when

sp cifyin rated values f or the con erter As mentioned a ove, f urther reserves are ne ded

for d namic

4.3 AIC rating

The req ired AIC ratin s are an ac umulation of req irements of several origin lke

sin soidal con ition , harmonic c r ents an d namic con ition

4.3.2 Conv rter ratin und r sinusoidal condition

The worst-case con ition f or o eration is with rated c r ent, purely ca acitive, at the

maximum alowed level of the voltage at the IPC In this case the con erter sti has to del ver

the p ak value of lne-side con erter voltage req ired in tantaneou ly Otherwise the amou t

of ca acitive c r ent has to b l mited or the lne c r ents wi not b as desired

4.3.3 Conv rter rating in c s of harmonic c r e ts

In ad ition to the ratin dis u sed for sin soidal con ition in the precedin section, further

req irements f ol ow f rom harmonic c r ents control The eq ivalent circ it diagram (Fig re 4)

remain vald

Eac desired c r ent harmonic req ires an ad itional voltage at the ef fective s p ly-side f ilter

imp dan e The s p rp sition prin iple is a plca le Therefore, al req ired voltages can b

IE C

Trang 26

ad ed De en in on the phase an le of the harmonic c r ent, the in tantane u ly req ired

p ak value of the con erter voltage varies As a worst-case ratin , al p ak values of voltage

res ltin f rom the f un amental an al desired harmonic have to b ad ed to the p ak value

of the voltage at the IPC f or maximal in tantane u con erter voltage If the ratin of the

con erter do s not al ow han ln this voltage, lne c r ents wi not b generated as desired

In sp cial cases, where the voltage at the IPC contain many harmonic , the p ak value of

the voltage at the IPC in lu in worst-case s p rp sition of harmonic has to b u ed for the

ratin of the con erter

4.3.4 Conv rter ratin un er d namic conditions

The eq ivalent circ it (Fig re 4) sti remain val d However, now the c r ents in the eff ective

s p ly-side imp dan es have to b c an ed dy amical y This req ires a certain amou t of

voltage acros these imp dan es This voltage has to b s p led by the con erter

De en in on the desired d namic p rf orman e the ratin of the con erter has to b matc ed

to alow large enou h in tantane u values of the AIC voltages

5 Ele tromagnetic compatibi ity (EMC) considerations f or the use of AICs

In this clau e a selection of EMC asp cts is covered The selection is done in order to c o se

the a pro riate AIC f un tional ty with the provision that there s ould b no disturbin

intereren e at the p wer s p ly network with other eq ipment

More ver the active eq al zation of the p wer s p ly network by u in an AIC wi b

des rib d as wel as the typical side eff ects by u in an AIC

The determination of the p wer s p ly imp dan e in the ran e b twe n 2 kHz an 2 kHz,

the typical with tan ca a i ty of p wer ca acitors an other eq ipment an the displacement

of resonan e f req en ies in the p wer s p ly network are con idered This le d to the

recommen ation of desig g idel nes f or emis ion values of AICs in the ran e of 2 kHz up to

15 kHz

Emis ion an immu ity are given in the relevant prod ct stan ard e.g IEC 618 0-3 in the

case of Power Drive Sy tems or IEC 6 0 0-2 for Uninter uptible Power Sy tems

Fig re 5 – Th ba ic is ue of EMC a tools of e onomic

The minimum req ired immu ity of electric a p ratu , the comp tibi ty levels in the p wer

s p ly network an the maximum al owed emis ion of disturb n es are directly related to

IE C

Trang 27

The ac e tan e of the recommen ed desig g idel nes for emis ion values b twe n 2 kHz

an 15 kHz wi al ow widespread u e of AICs in multiple a plcation f or the control of

electrical energ in the context of the Smart Grid an Energ Ef ficien y initiatives

In the f req en y ran e b twe n 2 kHz to 9 kHz a s stem of multiple AICs can b desig ed to

me t the emis ion values at the PCC This al ows the u e of can el ation tec niq es when

multiple AICs are u ed together

This a pro c mig t also b con idered a ove 9 kHz However, it may b les val d ne r

15 kHz, d e to radiated eff ects

5.2 Low-f re ue c phe ome a (<15 kHz)

L w- req en y EMC phenomena mainly oc ur d e to con u tive, in u tive an ca acitive

coupl n of the p wer s p ly network to the neig b urin network an also d e to

intereren e b twe n devices con ected to the s p ly network

Harmonic , voltage f l ctuation , voltage dips an commutation notc es are p rt of the l

ow-f req en y p wer s p ly related phenomena However, voltage flu tuation an commutation

notc es are sig if i antly red ced comp red to con entional con erters

AICs generate distortion with f eq en ies originatin f om the switc in of the semicon u tor

valve devices whic have to b s ff i iently mitigated by the s p ly-side fi ter of the AIC (se

Fig re B.2)

The p wer s p ly network’s imp dan e an s ort-circ it ratio R

SCe

have a decisive imp ct

(se 5.2.3.2) on the fi ter p r orman e The s p ly s stem, its config ration an the lo d have

to b con idered together in the evaluation Th s tec nical p s ibi ties for the l mitation of

emis ion have to b analy ed in ivid al y for e c a pl cation

If several AICs are con ected to the same s p ly s stem it has to b noted that the res ltin

voltage distortion wi b lower or eq al to the distortion cau ed by one big eq ivalent AIC d e

to the ran om s p rp sition

It has to b noted that non-sin soidal input c r ent is not only generated by distortion of the

AIC, but as wel by non-sin soidal s p ly voltage, cau in p rasitic c r ents flowin throu h

a pl ed ca acitive input f ilters

Me s rin q antities at the d.c.-side con ection an /or at the s p ly-side fi ter is a

c al en in tas Me s rin eq ipment with a b n width of ten to twenty times the pulse

f req en y is req ired in case harmonic ne d to b me s red

Se ad itional inf ormation in An ex B

5.2.2 Emerging conv rter top logie a d th ir a v nta e f or th power s pply

network

Fig re 7 an Fig re 8 s ow the tec nological progres an the main miestones of diff erent

to ologies (se Fig re 6) with imp ct on the p wer s p ly network by presentin their typical

wave s a es for p wer s p ly c r ent distortion an voltages

Trang 28

Figure 6 – Typic l power s p ly n twork c r e t i

L(t) a d volta e u

LN(t) of a pha e

control e conv rter with d.c output a d inductiv smoothing

Figure 7 – Typic l power s pply network c r e t i

L(t) a d volta e u

LN(t) of a

un ontrol e conv rter with d.c output a d c pa itiv smo thing

Figure 8 – Typic l power s pply network c r e t i

L(t) a d volta e u

LN(t) of a AIC

re l ze by a PWM Conv rter with c pa itiv smoothing without a ditional fi ters

With the emergin tec nolog develo ment, the a pro c toward an ide l sin soidal wave

s a e of the eq ipment input c r ent (whic had b en a go l sin e lon time) has b en more

closely ac ieved

IEC

IE C IEC

Trang 29

5.2.3 Activ e ual zing of the p wer s pply network

An AIC is a le to s p ly active an re ctive p wer (ca acitive or in u tive) in b th direction

(4-q adrant o eration) Th s if the AIC is cor ectly rated the u er can a ply a d namic

re ctive p wer comp n ation without ad itional comp n ator f aci ties Fig re 9 s ows an

example of at aina le active an re ctive p wer of the AIC at diff erent l ne voltages

Figure 9 – Ex mple of at ainable a tiv a d re ctive power of the AIC (VSC- ype) at

dif fere t l ne to l ne volta e in per unit (with 10 % combine tra sformer a d fi ter

ind ctor s ort circ it volta e, X/R ratio = 10/1, d.c volta e = 6,5 kV)

For an AIC b sed on PWM tec nology, virtual y no harmonic c r ent distortion oc urs b low

the pulse f req en y u les they are generated intentional y f or the purp se of el minatin

p rtic lar harmonic comp nents (se 4.2.7)

In this case the con erter wi general y improve the q alty of the p wer s p ly network

(active eq al zin of the p wer s p ly network) by comp n atin low f eq en y harmonic to

a desired extent Further, pre-existin disturb n es may b even mitigated by s c con erters

eq ip ed with an a pro riate control s stem an /or hig er order f ilters A sig ificant p rtion of

harmonic c r ents at the IPC may b cau ed by the b c grou d distortion of the p wer s p ly

network voltage

The dif ferent harmonic can b calc lated u in Fourier analy is an red ced or

comp n ated by se arate controlers An example of a so cal ed active f ilter is s own in

Fig re 1 f or thre phase lo d but the method is also a pl ca le to sin le phase cases

IE C

-2.5-2-1.5-1-0.500.51

1.522.5

p wer t o grid <- P [MW] -> p wer t o d b s

0.8

cs(ϕ)=

0.9

cs(ϕ)=

0.9

-2.5-2-1.5-1-0.500.51

1.522.5

p wer t o grid <- P [MW] -> p wer t o d b s

0.8

cs(ϕ)=

0.9

cs(ϕ)=

0.9

Trang 30

Figure 10 – Principle of compe s ting giv n harmonic in the p wer s pply

s stem by using a AIC a d s itable control simulta eously

5.2.3.2 Typic l side ef fe ts

As a typical side ef fect of the active comp n ation with the switc in action of the

semicon u tor valves in the AIC, harmonic distortion may oc ur ne r the pulse f req en y an

at integer multiples of it

NOT 1 Th f olowin te t refers to two-le el to olo y a c rdin to Cla s 6 In c s of th a plc tio of thre

-le el or multie el te h olo y, th v lta e distortio s are s b ta tialy lower

Contrary to a phase control ed brid e with c r ent source c aracteristic (con entional

con erters), the voltage wavef orm of an AIC (VSC) on the s p ly side of the brid e is

determined by the switc in action of the semicon u tor valves an the voltage of the d.c

l n ca acitor, se Fig re 10 Furthermore, the pulse p tern is f airly in e en ent of the lo d

of the con erter

Due to this c aracteristic the voltage distortion cau ed in the p wer s p ly network de en s

on the pulse p tern a pled an the voltage s arin b twe n the imp dan e of the p wer

s p ly network an the imp dan e of the s p ly-side f ilter of the AIC When a simple L-i ter

is u ed an the ca acitan es an resistan es of the s p ly s stem are ig ored, this cau es

the hig est distortion Fig re 1 an f ormula (1), (2) an (3) s ow the formation prin iple of

the distortion in the l ne-to-l ne an l ne-to-neutral voltage generated by an AIC with an L-f ilter

an as umin that the s p ly imp dan e is in u tive

IE C

Trang 31

Fig re 1 – Typic l Volta e Distortion in the Line- o-Line a d Line- o-Ne tral Volta e

g nerate by a AIC without a ditional f ilters (u in % a d t in d gre s)

e uLL

L1Nd

L1NL1N

ˆ

31

ˆ

2

XXX

UU

UU

L12d

L12L12

ˆ

21

ˆ

2

XXX

UU

UU

ˆan1,1

ˆ

L1Nd

L12d

UU

UU

(3)

Takin into ac ou t the feq en y de en en y of the network imp dan e ac ordin to

Fig re 2 , Formula (2) c an es to Formula (4) In order to evaluate the exp cted distortion in

the s p ly s stem, it is ad isa le to u e the s ort-circ it p wer ratio R

SCefor calc lation

L1

sc e

e u

sc v ,h

h

)LL1(

)LL1(

1,1

21

X

ÛU

⋅+

Zre

XhX

k

IE C

Trang 32

The f ormula c anges to:

Zreh

sc e

e u

sc v ,h

h

)LL1(

)LL1(

1,1

21

2

kX

Ru

X

X

ÛU

⋅+

LL1(

)LL1(

kRu

kf

kRu

k

ÛU

=

⋅+

omin l/S

e u, th s X

e u

= 0,0 R

SCeX

L)

With these values the ampltu e of the 3 kHz- ip le in the l ne-to-lne voltage is a proximately

1,3 % Fig re 12 s ows the typical pulse f req en y voltage distortion in the p wer s p ly

network de en in on R

SCe

C ,e u

f or an AIC (PWM typ ; 2-L vel) with a pulse

f eq en y of 3 kHz an p s ive mitigation provided by an L-f ilter

Figure 12 – Ba ic c ara teristic of the relativ volta e distortion (5 th h rmonic)

of one AIC operate at a puls fre ue c of 3 kHz v rs s R

SCewith the l ne

impe a c a cordin to 5.2.4

Regardin the side ef fects on the p wer s p ly network it is f urthermore remarka le for AICs

that the s p ly imp dan e play a more imp rtant role in the harmonic c r ent distortion than

it do s with the con entional con erters The imp ct is gre ter with smal er fiter re ctan es

An example of this is s own in Fig re 13 for the L-i ter case

The con eq en e of this c aracteristic is that harmonic c r ent distortion of the eq ipment is

lower with a we k p wer s p ly network than with a stron er one Therefore calc lation

b sed on the c r ent distortion of the eq ipment me s red in a stron p wer s p ly network

may exag erate the estimated voltage distortion in a we k p wer s p ly network

IEC 0

12345

L

%

Trang 33

Figure 13 – Ba ic c ara teristic of the relativ c r e t emis ion (5 th harmonic)

of one AIC at a puls fre ue c of 3 kHz v rs s R

SCe

with the l ne

impe a c a cording to 5.2.4

However, in spite of the fact that the harmonic c r ent distortion decre ses with hig er s p ly

imp dan e the imp ct of the more u f avoura le voltage s arin ratio predominates an may

res lt in an ex es ive voltage distortion level Theref ore ad itional fi ter me s res mig t b

ne ded when AICs are con ected in p rtic lar to the publc p wer s p ly network

Several dif ferent f ilter config ration can b a pl ed, al with the aim to red ce the voltage

distortion at the pulse f eq en y an its side b n s Fig re 14 s ows the thre most u ed

state of the art dif ferential mode l ne fi ter solution for VSC The simplest f ilter is the L- i ter,

as des rib d b f ore An alternative with b ter fi ter eff i ien y an les l ne f eq en y voltage

dro is the LCL fi ter As a p wer s p ly network side in u tor L

2, the stray in u tan e of a

tran f ormer may b u ed If no active dampin in the control is implemented, a p s ive

dampin as s own in the damp d tra p d LCL- iter to olog of Fig re 14 mig t b

neces ary To in re se the dampin of a con tant pulse f req en y rip le f urther, a tra p d

LCL fi ter may b u ed With a third in u tor a series resonant circ it f or the pulse feq en y

is buit A decre se of the f ilter p rorman e for pulse f eq en y multiples s ould b

con idered

Fig re 14 – Single pha e ele tric circ it of the thre commonly us d dif f ere tial mode

pa siv l ne fi ter topologie f or VSC a d one e ample for pa siv damping

5

10

152233

L1(%)

Trang 34

As an example, Fig re 15 s ows the at en ation of the VSC l ne to l ne voltage to the l ne to

l ne voltage at the IPC The p wer s p ly network is here y as umed to b resistive-in u tive

volta e at the IPC with state of the art dif ere tial mode pa siv l ne fi ter to ologie

NOT 2 Es e ialy f or L-iters th a ro s th ln s (X- c p citors of a y a ditio al EMI f ilters mig t b ta e into

a c u t in th fiter d sig , b c u e th y ma h v a c n id ra le ef fe t o th fiter p rorma c

The desig of fi ter circ its for an AIC has to take into con ideration that an u desira le

resonan e with the p wer s p ly network’s imp dan e may a p ar b low the tu ed

resonan e f req en y of the f ilter ar an ement whic may le d to an u intentional in re se of

the s p ly imp dan e in the lower f req en y ran e An example of this can b se n in

Fig re 15 arou d 2 kHz As a res lt of this ef fect, resonan es may arise if con entional

con erters with sig if i ant harmonic distortion at lower f req en y are connected on the same

p wer s p ly network with an AIC

A practical example is s own in Clau e A.7

In s c cases it may b neces ary to ad dampin circ its to the ad itional f ilter

ar an ements In this way the eff ect of this resonan e is red ced, se Fig re 15, gre n c rve

In te d of p s ive dampin circ its, that in re se los es an decre se the f ilter eff ect, a

dampin fu ction may b in lu ed in the AIC control However, this kin of active dampin

req ires that the fi ter resonan e f req en ies are les than half of the pulse f eq en y

5.2.4 Me s re power s pply network impe a c s in the ra g betwe n 2 kHz to

The values of the p wer s p ly network imp dan es in the ran e of the pulse feq en y of an

AIC an its harmonic mig t have sig ificant influen e on the con u ted emis ion of an

electric or electronic device

In a dedicated rese rc project, the p wer s p ly network imp dan es at the IPC in variou

IE C

UIP

UV SCdB

Trang 35

On the one han this wi help to desig ro u t an aff orda le s p ly side fi ters for the AIC

an on the other han the res lts are u eful f or the definition of emis ion levels of AICs

The stu ies were p rormed at several sites in North, Central an South German an

Northern Fran e over thre ye rs At e c me s rement location, the p wer s p ly network

imp dan es were determined in intervals of one hour In general, e c determination req ired

a whole day me s rement (se [1]

1

For explanation of dif ferent p s ible method se A.8

Al examined network had a rated voltage of 4 0 V an al were ca le network The

fol owin res lts are not val d f or overhe d l nes

Figure 16 – Conne tion of the power s pply network

impe a c me s reme t e uipme t

Fig re 17 s ows the imp dan e c aracteristic of a low-voltage tran former u der no lo d

con ition This b sical y cor esp n s to the le kage re ctan e

_ _ _ _ _ _ _

1

Numb rs ins u re bra k ts refer to th biblo ra h

IEC

Trang 36

Figure 17 – Ex mple of the me s re impe a c of a low-volta e tra sf ormer

und r no loa condition S = 6 0 kVA, u

k

= 6,0 %

ne rly half of al the me s red s p ly s stems The diff eren es are more sig if i ant at hig er

f req en ies ( > 6 kHz ) than at lower f req en ies

Figure 18 – Me s re v riation of the p wer s pply network impe a c

ov r the cours of a da at one loc tion

Esp cial y lo d with p wer electronic circ its on the s p ly side an cor esp n in

IEC

IE C

Trang 37

negative imaginary p rt is s own i.e the p wer s p ly network b haves ca acitive for a

certain feq en y ran e

Fig re 19 – Power s pply network impe a c with partly ne ative ima inary part

Ap roximately 2 % of the me s red p wer s p ly network s owed a ca acitive (negative)

imaginary p rt of the p wer s p ly network imp dan e for the in p cted f eq en y ran e

The imp dan es s own in Fig re 18 an Fig re 19 were me s red b twe n the phase an

the neutral con u tor an are re resentative examples only Therefore an evaluation of the

statistical distribution of the p wer s stem imp dan e f or the resp ctive feq en y is

presented in Fig re 2 For this purp se, me s rements have b en car ied out at 2 dif ferent

me s rement location (North, Central an South German an Northern Fran e) an , fom

them, over 1 3 0 gra h were recorded

Figure 2 – Distribution of power s stem impe a c (me s re betwe n pha e

a d ne tral conductor) in low-volta e s stems v rs s fre ue c

IE C IEC

Trang 38

The displayed 10 % c rve in Fig re 2 is the en elo e over al p wer s stem imp dan e

c rves It is comp sed of al maximum values f or e c f eq en y control p int The 0 % c rve

is comp sed of al minimum values f or e c feq en y The 5 % c rve, f or example, s ows

the imp dan e value f or every f eq en y; where y 5 % of the me s red p wer s stems

have hig er imp dan e an 5 % lower imp dan e

The impedan e c rve of the LISN (Line Imp dan e Sta i zation Network) derived f rom

IEC 610 0-4-7 for harmonic an interharmonic me s rement is also s own in Fig re 2

Ac ordin to Fig re 2 , the me s red imp dan es are con idera ly b low the imp dan e

c rve given in IEC 610 0-4-7:2 0 whic demon trates that u in this imp dan e c rve for

f req en ies up to 9 kHz would le d to overestimation of distortion

Ab ve 9 kHz the stan ardized imp dan e ac ordin to CISPR 16-1-1 a pl es

The imp dan e b twe n phase an neutral con u tor is mainly imp rtant for sin le-phase

lo d , where s f or b lan ed thre -phase lo d , without a con ected neutral con u tor, the

imp dan e at the in ivid al phases is relevant

A me s re of this is the imp dan e in the p sitive-seq en e s stem This p sitive-seq en e

s stem an the negative seq en e s stem are identical in most p wer s stems This had

b en con rmed by [2] as wel as by the me s rements car ied out

The p sitive-seq en e imp dan e is the ratio of voltage to c r ent in the p sitive-seq en e

s stem

The imp dan e in the zero s stem is ir elevant f or these sp cific analy es an in the case of

thre -phase devices without a con ected neutral con u tor

In the case of s mmetrical imp dan e values, the folowin a pl es:

ωω

ωω

jZ

LL

LL1

NOT 1 In th c s of a ymmetric l imp d n e v lu s, th imp d n e matrix c ntain s c n ary eleme ts [2] In

ty ic l s p ly s stems th s eleme ts c n b ig ore , b c u e th y are mu h lower th n th dia o al eleme ts,

a d o ly th dia o al eleme ts c n b u e to c lc late th p sitiv s q e c imp d n e

The statistical evaluation of the p sitive-seq en e imp dan e values res lted in the fol owin

Trang 39

Figure 21 – Statistic l distribution of p sitiv -s q e c impe a c v rs s

f re ue c in low-volta e power s p ly n twork

Fig re 2 an Fig re 21 s ow, that on the average, the levels in the p sitive-seq en e

s stem |Z

p s

| are a out 5 % lower than the imp dan e |Z

L N

| b twe n phase an neutral

In IEC 610 0-4-7 , the imp dan e of the neutral con u tor has b en set to zero, whic would

than al me s red imp dan e levels b twe n a phase an the neutral con u tor an are also

con idera ly hig er than al me s red levels of the p sitive seq en e imp dan e

There are also sig ificant dif feren es of the p wer s stem imp dan e with resp ct to publ c

an in u trial p wer s p ly network

In ad ition, it s al b noted that resonan es oc ur more f eq ently in the ran e b low

10 kHz Due to the network imp dan e most resonan es are exp cted in the ran e b twe n

1 kHz an 4 kHz

As the me s rin res lts s ow, the s stem imp dan e c rves do not have a pro ortional

in re se with the f req en y where s they display a ste p in re se in the ran e b low 2 kHz

Ab ve 2 kHz, the slo e decre ses con idera ly The p wer s stem imp dan e in the

f req en y ran e f rom 2 kHz to 9 kHz is therefore not to b a proximated by me n of l ne r

extra olation with the 5 Hz imp dan e

NOT 2 As a e ample: Th 5 Hz imp d n e v lu of th 9 % c rv in Fig re 21 is a o t 0,7 Ω Th

imp d n e v lu at 9 kHz is a o t 3,1 Ω or 4,2 time 0,7 Ω A former ln ar a pro imatio of th 5 Hz

imp d n e to 9 kHz wo ld h v le to a v lu of 0 Ω whic is in d q ately to hig

5.2.5 Prop s l of a appropriate l ne impe a c stabi s tion network (LISN) f rom

2 kHz to 9 kHz

In order to predict s stem p rturb tion by me n of simulation , analytical models of p wer

s stem imp dan e are neces ary In this s bclau e a model that can b u ed for simulation is

s own in Fig re 2

IE C

Trang 40

Figure 2 – Equiv le t circ it de cribin the power s p ly network impe a c

The imp dan e values Z ne d to b e c simulated by comp nents The more comp nents

are u ed f or Z, the more ac urately the imp dan e may b simulated but the gre ter the

computin p wer ne ded f or the simulation an the les practical is the re l zation of s c a

network

As a con eq en e, a u ef ul compromise b twe n ac urate simulation of the me s red c rves

an the computin p wer ne ded f or this has b en fou d in the to olog ac ordin to

Fig re 2

Figure 2 – Circ it topology f or power s stem simulation

The imp dan e Z is calc lated as fol ows:

22

11

2211

11

jR

LRLRZ

ωω

ω

++

+

=

(9)

Formula (9) re resents the trial f un tion in the sen e of regres ion analy is It can b se n

that the trial fu ction is non-l ne r an complex

IE C

R 1Z

AIC

Ngày đăng: 17/04/2023, 11:52

w