4 6 Characteristic of a PWM active infe d con erter of voltage source typ an two level to olog... 5 7 Characteristic of a PWM active infe d con erter of voltage source typ an thre level
Trang 1Syst èmes et équipement s élect roniques de puissance – Conditions de
fonct ionnement et caract érist iques des convert isseurs à al ment at ion act ive
(AIC), y compris les recommandat ions de concept ion pour leurs valeurs
Trang 2THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyr ight © 2 15 IEC, Ge e a, Switzer la d
Al rig ts r es r ve Unle s oth rwis s e ifi d, n p rt of this p blc tio ma b r epr od c d or uti z d in a y form
or b a y me n , ele tr onic or me h nic l in lu in p oto o yin a d microfim, with ut p rmis io in wr itin from
eith r IEC or IEC's memb r Natio al Commite in th c u tr y of th re u ste If y u h v a y q e tio s a o t IEC
c p r i ht or h v a e q ir y a o t o tainin a ditio al ri hts to this p blc tio , ple s c nta t th a dr es b low or
y ur lo al IEC memb r Natio al Commite for ur th r informatio
Dr oits d r eprod ctio ré er vé Sa f in ic tio c ntraire, a c n p rtie d c te p blc tio n p ut êtr e repro uite
ni uti s e s u q elq e forme q e c s it et p r a c n pro é é, éle troniq e o mé a iq e, y c mp s la p oto o ie
et le micr ofilms, s n la c rd é rit d l EC o d Comité n tio al d l EC d p y d d ma d ur Si v u a e d s
q e tio s s r le c p r i ht d l EC o si v u d sire o te ir d s droits s p léme tair es s r c te p blc tio , uti s z
le c ord n é s ci-a r ès o c nta te le Comité n tio al d l EC d v tr ep y d résid n e
Th Intern tio al Ele trote h ic l Commis io (IEC) is th le din glo al org niz tio th t pr ep res a d p bls e
Internatio al Sta d r ds for al ele tri al ele tr onic a d relate te h olo ie
Abo t IEC p blc tio s
Th te h ic l c nte t of IEC p blc tio s is k pt u d r c n ta t r eview b th IEC Ple s ma e s re th t y u h v th
late t e itio ,a c rrig n a or a ame dme t mig t h v b e p bls e
IEC Cat alo ue - webst ore.e ch/ cat alo ue
Th st an -alo e a plc t io for c n ultin th e tire
biblo ra hic l informat io o IEC Intern tio al Sta d rd ,
Te h ic l Sp cific tio s, Te h ic l R ep rts a d oth r
d c me ts A v aia le for P , Ma OS, A ndroid Ta let s a d
iPa
IEC p blc t i ns s arch - www ie ch/ se rch u
Th a v an e s arc e a le to fin IEC p blc t io s b a
variety of crit eria (efere c n mb r, t ext, t ec nic l
c mmitt e,…) It als gives informatio o projec t s, re la e
a d wit hdrawn p blc tio s
IEC Just P blshed - webst ore.e ch/ just pu lshed
St ay u to d te o al n w IEC p blc t io s Ju t Pu ls e
d t ais al n w p blc t io s rele s d A v aia le o ln a d
als o c a mo t h b emai
Ele t ro edia - www ele t ro edia.org
Th world's le din o ln dic t io ary of elec t ro ic a d
ele t ric l t erms c nt ainin more th n 3 0 0 terms a d
d finitio s in En ls a d Fre c , wit h e uiv ale t t erms in 15
a ditio al la g a e Als k nown a t he Int ern t io al
Elec t rot ec nic l Vo a ulary (IEV ) o ln
IEC Glos ar y - st d.e ch/ glos ary
More t ha 6 0 0 ele t rot ec nic l termin lo y e t rie in
En ls a d Fre c e tra t ed fom t he Terms a d Definitio s
cla s of IEC p blc t io s is u d sin e 2 0 Some e t rie
h v e b e c le t ed fom e rler p blc tio s of IEC TC 3 ,
7 ,8 a d CISPR
IEC Cust omer Servic Cent re - webst ore.ec ch/ csc
If y ou wis to giv e u your fe d a k o t his p blc tio or
n e furt her a sist an e, ple s c nt act h Cu t omer Serv ic
Ce t re:c c@ie c
A pro os de l'IEC
L Commis io Ele trote h iq e Inter natio ale (IEC) e t la premièr e orga is tio mo diale q i éla or e et p ble d s
Norme internatio ale p ur to t c q i a trait à léle tri ité,à léle tr oniq e et a x te h olo ie a p re té s
A pro os de p blc t i ns IEC
L c nte u te h iq e d s p blc tio s IEC e t c n tamme t rev Ve i e v u a s r er q e v u p s é e lé itio la
plu r éc nte, u c r rig n um o ame d me t p ut a oir été p blé
Cat alo ue IEC - webst ore.e ch/ cat alo ue
Applc t io a t on me p ur c n ult er t ou le re s ig eme t s
biblo ra hiq e s r le Norme intern t io ale ,
Sp cific t io s t ec niq e , R ap ort s te h iq e et a tre
d c me ts d l EC Dis o ible p ur P , Ma OS, t ablett es
A ndroid et iPa
Recherche de p blc t i ns IEC - w ww ie ch/ se rch u
L re h rc e avan é p rmet d t ro ver d s p blc tio s IEC
e uti s nt difére t s crit ère (n méro d référe c , t exte,
c mit é d’ét ud s,…) Ele d n e a s i d s informatio s s r le
projets et le p blc t io s remplac ée o retiré s
IEC Just P blshed - webst ore.e ch/ just pu lshed
R este informé s r le n uvele p blc t io s IEC Ju t
Pu ls e d tai e le n uv ele p blc t io s p ru s
Dis o ible e lg e et a s i u e fois p r mois p r emai
Ele t ro edia - www.ele t ro edia.org
L premier dic t io n ire e lg e d t erme éle tro iq e et
éle triq e I c ntie t plu d 3 0 0 terme et d finit io s e
a glais et e fa ç is, ain i q e le terme é uiv ale t s d n
15 la g e a ditio n le Eg leme t a p lé Vo a ulaire
Elec trote h iq e Int ern tio al (IEV) e lg e
Glos aire IEC - st d.e c h/ glos ar y
Plu d 6 0 0 e t ré s t ermin lo iq e élec t rot ec niq e , e
a glais et e fa ç is, e traite d s art icle Terme et
Définit io s d s p blc tio s IEC p ru s d p is 2 0 Plu
c rt ain s e tré s a t érie re e traite d s p blc t io s d s
CE 3 , 7 , 8 et CISPR d l EC
Serv ic Clent s - w ebst ore.e c h/ cs
Si vou d sire n u d n er d s c mme taire s r c tt e
p blc t io o si v ou av ez d s q e t io s c nt ac t ez-n u :
Trang 3Syst èmes et équipement s élect roniques de puiss nce – Conditions de
fonct ionnement et caract érist iques des convert isseurs à al ment at ion act ive
(AIC), y compris les recommandat ions de concept ion pour leurs valeurs
d'émis ion inférieure à 150 kHz
W arnin ! Mak e s re that you o tain d this publc tion from a a t horize distributor
At te tion! V eui ez vou a s rer q e vou a ez o te u c t te publc t ion via u distribute r a ré
c olour
inside
Trang 4FOREWORD 9
INTRODUCTION 1
1 Sco e 12 2 Normative ref eren es 12 3 Terms an def i ition 13 4 General s stem c aracteristic of PWM active infe d con erters con ected to the p wer s p ly network 18 4.1 General 18 4.2 Basic to ologies an o eratin prin iples 18 4.2.1 General 18 4.2.2 Op ratin prin iples 18 4.2.3 Eq ivalent circ it of an AIC 2
4.2.4 Fi ters 21
4.2.5 Pulse p tern 21
4.2.6 Control method 2
4.2.7 Control of c r ent comp nents 2
4.2.8 Active p wer f actor cor ection 2
4.3 AIC ratin 2
4.3.1 General 2
4.3.2 Con erter ratin u der sin soidal con ition 2
4.3.3 Con erter ratin in case of harmonic c r ents 2
4.3.4 Con erter ratin u der d namic con ition 2
5 Electromag etic comp tibi ty (EMC) con ideration for the u e of AICs 2
5.1 General 2
5.2 L w-f req en y phenomena (<15 kHz) 2
5.2.1 General 2
5.2.2 Emergin con erter to ologies an their ad antages for the p wer s p ly network 2
5.2.3 Active eq al zin of the p wer s p ly network 2
5.2.4 Me s red p wer s p ly network imp dan es in the ran e b twe n 2 kHz to 2 kHz 3
5.2.5 Pro osal of an a pro riate l ne imp dan e sta i sation network (LISN) f rom 2 kHz to 9 kHz 3
5.2.6 Ef fects on in u trial eq ipment in the f req en y b n 2 kHz to 9 kHz 41
5.3 Hig -req en y phenomena (> 15 kHz) 4
5.3.1 General 4
5.3.2 Mitigation of distortion 4
5.3.3 Immu ity 4
5.3.4 EMI f ilters 4
5.4 Au ible noise ef fects 4
5.5 L akage c r ents 4
5.6 Asp cts of s stem integration an dedicated tests 4
6 Characteristic of a PWM active infe d con erter of voltage source typ an two level to olog 4
6.1 General 4
Trang 56.3 Power control 4
6.4 Dy amic p rorman e 5
6.5 Desired non-sin soidal l ne c r ents 5
6.6 Un esired non-sin soidal l ne c r ents 5
6.7 Avai a i ty an s stem asp cts 51
6.8 Op ration in active fiter mode 5
7 Characteristic of a PWM active infe d con erter of voltage source typ an thre level to olog 5
7.1 General f un tion, b sic circ it to ologies 5
7.2 Power control 5
7.3 Dy amic p rorman e 5
7.4 Un esired non-sin soidal l ne c r ents 5
7.5 Avai a i ty an s stem asp cts 5
8 Characteristic of a PWM Active Infe d Con erter of Voltage Source Typ an Multi L vel To olog 5
8.1 General f un tion, b sic circ it to ologies 5
8.2 Power control 5
8.3 Dy amic p rorman e 5
8.4 Power s p ly network distortion 5
8.5 Avai a i ty an s stem asp cts 5
9 Characteristic of a F3E AIC of the Voltage Source Typ 5
9.1 General f un tion, b sic circ it to ologies 5
9.2 Power control an l ne side f ilter 5
9.3 Dy amic p rorman e 61
9.4 Harmonic c r ent 61
10 Characteristic of an AIC of Voltage Source Type in Pulse Cho p r To olog 6
10.1 General 6
10.2 General f un tion, b sic circ it to ologies 6
10.3 Desired non-sin soidal l ne c r ent 6
10.4 Un esired non-sin soidal l ne c r ent 6
10.5 Rel a i ty 6
10.6 Per orman e 6
10.7 Avai a i ty an s stem asp cts 6
1 Characteristic of a two level PWM AIC of c r ent source typ (CSC) 6
1 1 General 6
1 2 General f un tion, b sic con erter con ection 6
1 3 Power control 6
1 4 Dy amic p rorman e 6
1 5 Line c r ent distortion 6
1 6 Op ration in active fiter mode 6
1 7 Avai a i ty an s stem asp cts 6
An ex A (informative) 6
A.1 Control method for AICs in VSC (Voltage Source Con erter) to ology 6
A.1.1 General 6
A.1.2 Con ideration of control method 6
A.1.3 Short-circ it ride throu h fu ctional ty for decentral zed p wer infe d with AIC 7
A.1.4 F ult ride throu h mode 7
Trang 6A.2 Examples of practical re l zed AIC a pl cation 7
A.2.1 AIC of c r ent source type (CSC) 7
A.2.2 Active infe d con erter with commutation on the d.c side (re ctive p wer con erter) 7
A.3 Detais con ernin two level an multi-level AICs in VSC To olog 7
A.3.1 Pro erties of active inf eed con erters (PWM) with dif ferent n mb r of levels 7
A.3.2 Examples of typical waveforms of AICs 7
A.3.3 Con tru tion an re l zation 7
A.4 Basic tran fer rules b twe n voltage an c r ent distortion of an AIC 7
A.5 Examples of the influen e of AICs to the voltage q al ty 7
A.6 With tan ca a i ty of p wer ca acitors toward distortion in the ran e of 2 kHz to 9 kHz 8
A.6.1 General 8
A.6.2 Catalog e inf ormation a out p rmis ible harmonic lo d 8
A.6.3 Freq en y b u daries for p rmis ible distortion levels 8
A.6.4 Freq en y sp ctrum of active inf eed con erters 8
A.6.5 Con lu ion 8
A.7 Imp ct of ad itional AIC fi ter me s res in the ran e of 2 kHz to 9 kHz 8
A.7.1 General 8
A.7.2 Example of a PDS con tel ation (AIC an CSI) 8
A.7.3 Con lu ion 8
A.8 Example of the p wer s p ly network imp dan e me s rement 8
A.8.1 General 8
A.8.2 Basic prin iple of me s rement 8
A.8.3 Harmonic comp nent injection method f or me s rement 9
A.8.4 Harmonic c r ent generation by disturbin device 9
A.8.5 Ref eren es b sed on c r ent injection by disturb n e (Method A) 9
A.8.6 Ref eren es b sed on sin soidal sin le f req en y injection (Method B) 9
An ex B (informative) 9
B.1 Basic con ideration for desig recommen ation of AICs in the ran e of 2 kHz to 9 kHz 9
B.1.1 Overview 9
B.1.2 General 9
B.1.3 With tan ca a i ty of p wer ca acitors con ected to the p wer s p ly network an recommen ation for the comp tibi ty in the f req en y ran e 2 kHz to 9 kHz 9
B.1.4 Basic con ition f or set in the ca acitor with tan ca a i ty c rve 9
B.1.5 Matc in of AIC con erters (2-L vel PWM) to diff erent p wer s p ly network con ition without overlo din the p wer ca acitor burden 9
B.1.6 Con ideration in regard to medium voltage p wer s p ly network 9
B.1.7 AIC fi terin con ideration 10
B.1.8 AIC a pro riate tec nical an economical amou t 10
B.1.9 Freq en y ran e f rom 2 kHz to 9 kHz 101
B.2 Desig recommen ation for con u ted emis ion of low voltage AICs in the
re sona le context of hig er f req en ies b twe n 9 kHz an 15 kHz 10
B.2.1 General 10
B.2.2 Data colection res lts 10
B.2.3 Con lu ion 10
Trang 7Fig re 1 – AIC in VSC to ology, b sic stru ture 19
Fig re 2 – AIC in CSC to olog , b sic stru ture 19
Fig re 3 – Eq ivalent circ it f or the interaction of the p wer s p ly network with an AIC 2
Fig re 4 – Voltage an c r ent vectors of l ne and con erter at fu damental f equen y f or diff erent lo d con ition 2
Fig re 5 – The b sic is ues of EMC as to ls of economic 2
Fig re 6 – Typical p wer s p ly network c r ent i L ( ) an voltage u LN ( ) of a phase control ed con erter with d.c output an in u tive smo thin 2
Fig re 7 – Typical p wer s p ly network c r ent i L ( ) an voltage u LN ( ) of an u control ed con erter with d.c output an ca acitive smo thin 2
Fig re 8 – Typical p wer s p ly network c r ent i L ( ) an voltage u LN ( ) of an AIC re lzed by a PWM Con erter with ca acitive smo thin without ad itional f ilters 2
Fig re 9 – Example of at aina le active an re ctive p wer of the AIC (VSC-typ ) at diff erent l ne to l ne voltages in p r u it (with 10 % combined tran former an f ilter in u tor s ort-circ it voltage, X/R ratio = 10/1, d.c voltage = 6,5 kV) 2
Fig re 10 – Prin iple of comp n atin given harmonic in the p wer s p ly s stem by u in an AIC an s ita le control simultane u ly 2
Fig re 1 – Typical Voltage Distortion in the Line-to-Line an Line-to-Neutral Voltage generated by an AIC without ad itional fi ters (u in % an t in degre s) 2
Fig re 12 – Basic c aracteristic of the relative voltage distortion (5 th harmonic) of one AIC o erated at a pulse feq en y of 3 kHz vers s R SCe with the l ne imp dan e ac ordin to 5.2.4 3
Fig re 13 – Basic c aracteristic of the relative c r ent emis ion (5 th harmonic) of one AIC at a pulse f eq en y of 3 kHz vers s R Ce with the l ne imp dan e ac ordin to 5.2.4 31
Fig re 14 – Sin le phase electric circ it of the thre commonly u ed diff erential mode p s ive l ne fi ter to ologies for VSC an one example for p s ive dampin 31
Fig re 15 – Example of the at en ation of the VSC l ne to l ne voltage to the l ne to l ne voltage at the IPC with state of the art dif ferential mode p s ive l ne fiter to ologies 3
Fig re 16 – Con ection of the p wer s p ly network imp dan e me s rement eq ipment 3
Fig re 17 – Example of the me s red imp dan e of a low-voltage tran former u der no lo d con ition S = 6 0 kVA, u = 6,0 % 3
Fig re 18 – Me s red variation of the p wer s p ly network imp dan e over the course of a day at one location 3
Fig re 19 – Power s p ly network imp dan e with p rtly negative imaginary p rt 3
Fig re 2 – Distribution of p wer s stem imp dan e (me s red b twe n phase an neutral con u tor) in low-voltage s stems vers s f req en y 3
Fig re 21 – Statistical distribution of p sitive-seq en e imp dan e vers s f req en y in low-voltage p wer s p ly network 3
Fig re 2 – Eq ivalent circ it des ribin the p wer s p ly network imp dan e 3
Fig re 2 – Circ it to olog f or p wer s stem simulation 3
Fig re 2 – Ap roximated an me s red 5 % imp dan e c rve 3
Fig re 2 – Sin le phase circ it to olog ac ordin to IEC 610 0-4-7 u ed for l ne imp dan e sta i sation network 4
Fig re 2 – Thre -phase circ it to olog for the lne imp dan e sta i sation network 41
Fig re 2 – Imp dan e variation in the 9 % c rve of the LISN des rib d in Fig re 2 41
Fig re 2 – PDS with large d.c ca acitan e 4
Trang 8Fig re 2 – PDS with large ca acitan e an lne in u tor 4
Fig re 3 – PDS with a large d.c ca acitan e an in u tors in the d.c l n 4
Fig re 31 – Basic EMI fi ter to olog 4
Fig re 3 – Bloc diagram of a PDS with hig f req en y EMI f ilter s stem 4
Fig re 3 – Basic i u tration of a to olog of a two level PWM voltage source AIC 4
Fig re 3 – Typical wavef orms of voltages u S1N / U LN, 1 an voltage u S12 / U LN, 1 at pulse f req en y of 4 kHz 4
Fig re 3 – Typical wavef orms of the common mode voltage u CM / U LN,1 at pulse f req en y of 4 kHz Power s p ly f eq en y is 5 Hz 4
Fig re 3 – Waveform of the c r ent i L1 / I eq at pulse feq en y of 4 kHz, relative imp dan e of u SCV,eq = 6 % 4
Fig re 3 – Bloc diagram of a two level PWM AIC 4
Fig re 3 – Distortion of the c r ent i L1 of re ctan e X eq , pulse f req en y: 4 kHz, relative re ctan e of u SCV,eq = 6 % 51
Fig re 3 – Typical voltages u L1N / U LN, 1 an u L12 / U LN, 1 at pulse feq en y of 4 kHz, relative re ctan e u SCV,eq = 6 %, R SCe 10 51
Fig re 4 – Basic to ology of a thre level AIC For a Power Drive Sy tem (PDS) the same to olog may b u ed also on the lo d side 5
Fig re 41 – Typical c rve s a e of the phase-to-phase voltage of a thre level PWM con erter 5
Fig re 4 – Example of a s d en lo d c an e of a 13 MW thre level con erter where the c r ent control ac ieves a resp n e time within 5 ms 5
Fig re 4 – Typical to olog of a flyin ca acitor (FC) four level AIC u in IGBTs 5
Fig re 4 – Typical c rve s a e of the phase-to-phase voltage of a multi-(f ou r)-level AIC 5
Fig re 4 – Distortin f eq en ies an ampl tu es in the lne voltage (me s red directly at the brid e terminals in Fig re 2 an the l ne c r ent of a multi evel (four) AIC ( ran former with 10 % s ort-circ it voltage) 5
Fig re 4 – To olog of a F E AIC 5
Fig re 4 – Line side fi ter an eq ivalent circ it for the F3E-con erter b haviour for the p wer s p ly network 5
Fig re 4 – Cur ent tran f er fu ction together with R SCe = 10 an R SCe = 7 0 an a l ne side fi ter: G(f) = i L1 / i con 5
Fig re 4 – PWM – voltage distortion over power s p ly network imp dan e f or F 3E-infe d in lu in p wer s p ly network side fi ter 6
Fig re 5 – Input c r ent sp ctrum of a 7 kW-F3E-con erter 61
Fig re 51 – Harmonic sp ctrum of the input c r ent of an F3E-con erter with R SCe = 10 61
Fig re 5 – An i u tration of a distortion eff ect cau ed by a sin le phase con erter with ca acitive lo d 6
Fig re 5 – a.c to a.c AIC pulse c o p r, b sic circ it 6
Fig re 5 – Il u tration of a con erter to olog for a c r ent source AIC 6
Fig re 5 – Typical wavef orms of c r ents an voltages of a c r ent source AIC with hig switc in f eq en y 6
Fig re 5 – Typical bloc diagram of a c r ent source PWM AIC 6
Fig re 5 – Cur ent source AIC u ed as an active f ilter to comp n ate the harmonic c r ents generated by a nonl ne r lo d 6
Trang 9Fig re A.1 – Prin iple s etc for combined voltage- an c r ent-injectin mod lation
example f or phase leg R 71
Fig re A.2 – Example f or control ed phase c r ent d rin a voltage dip at the p wer s p ly network u in h steresis plu PWM control 7
Fig re A.3 – Typical wavef orms of electrical p wer s p ly network c r ent an voltage f or a c r ent source AIC with low switc in f req en y [3 ] 7
Fig re A.4 – Cur ents an voltages in a (semicon u tor) valve device of an AIC an a mac ine side con erter b th of the c r ent source with low pulse feq en y [3 ] 7
Fig re A.5 – Total harmonic distortion of electrical p wer s p ly network an motor c r ent [3 ] remain alway b low 8 % ( rian les in straig t l ne) in this a plcation 7
Fig re A.6 – Basic to olog of an AIC with commutation on the d.c side (six pulse variant 7
Fig re A.7 – Dy amic p rf orman e of a re ctive p wer con erter 7
Fig re A.8 – Line side c r ent f or a twelve pulse Re ctive Power Con erter in a ca acitive an in u tive o eration mode (u SCV,eq = 15 %) 7
Fig re A.9 – The origin of the c r ent waveform of a RPC by the l ne voltage (sin soidal) an the con erter voltage (rectan ular) 7
Fig re A.10 – Two level to olog with nominal voltage of maximum 1 2 0 V an times ale of 5 ms/div 7
Fig re A.1 – Thre level to olog with nominal voltage of maximum 2 4 0 V an times ale of 5 ms/div 7
Fig re A.12 – F ur level to olog with nominal voltage of maximum 3 3 0 V an times ale of 5 ms/div 7
Fig re A.13 – General influen e of sig ificant c aracteristic to the voltage distortion an c r ent distortion 7
Fig re A.14 – Me s red red ction of voltage distortion when f our AICs are con ected to the p wer s p ly network 8
Fig re A.15 – Ex erpts f rom a catalog e information of a p wer ca acitor man facturer; 7 0 V AC; (rated voltage: 6 0 V AC) f or temp rature calc lation 81
Fig re A.16 – Re ctive p wer an los es of a p wer ca acitor s p l ed by a source with con tant ref eren e voltage an varia le f eq en y (R cp = f(h) 8
Fig re A.17 – Ap arent p wer an los es of a typical p wer ca acitor at dif ferent voltage distortion levels an the critical f req en y b u daries (at sin ular feq en y) where the temp rature rise re c es s bstantial values (vertical ar ows) 8
Fig re A.18 – Voltage sp ctrum of an AIC an the imp ct of a l ne imp dan e red ction to the temp rature of the ca acitor (f om 10 K to 0,4 K) an the comp sition of the sp ctrum 8
Fig re A.19 – A win turbine plant an a mine win er drive con ected on the same p wer l ne 8
Fig re A.2 – Power s p ly network config ration for the plant of Fig re A.19 with al ocated me s rement p ints 8
Fig re A.21 – Reg lar c r ent of the CSI (AIC-i ter disa led) an ampl f i ation of the c r ent in case of resonan e cau ed by the AIC-i ter circ it (when AIC fi ter is ena led) 8
Fig re A.2 – Basic prin iple of imp dan e me s rement 8
Fig re A.2 – Harmonic c r ent generation by disturbin device 9
Fig re A.2 – Me s rement by switc in a resistor 91
Fig re A.2 – Me s rement by a ca acitor b n 91
Fig re A.2 – A 6,6 kV p wer s p ly network imp dan e me s rement s stem for islan in detection by injectin interharmonic 9
Trang 10Fig re B.1 – With tan ca a i ty level toward harmonic voltages in the p wer s p ly
network in view of p rmis ible temp rature rise within ca acitors if the voltage
distortion is determined either by one predominatin feq en y (up er l ne) or if the
distortion is predominantly determined by a harmonic sp ctrum, cau ed by several
p ral el o erated AICs (2-L vel PWM) (lower l ne) 9
Fig re B.2 – Harmonic voltage sp ctrum of one 2-L vel PWM AIC with ac e ta le
temp rature in re se of a p wer ca acitor not ex e din 10 K 9
Fig re B.3 – Maximum voltage distortion of a sp ctrum, cau ed by several AICs
(sin le phase to ologies) 9
Fig re B.4 – Maximum voltage distortion of a sp ctrum, cau ed by several AICs ( hre
phases to ologies) 9
Fig re B.5 – Spre d he t of matc in sin le phase AICs (2-level) to diff erent p wer
s p ly network con ition in order to a ply the p wer ca acitor l mit c rves 9
Fig re B.6 – Spre d he t of matc in thre phases AICs (2-level) to diff erent p wer
s p ly network con ition in order to a ply the p wer ca acitor l mit c rves 9
Fig re B.7 – Ilu tration of the typical p wer s p ly network resonan e f eq en y by
in re sin AIC fi terin p pulation, vers s the voltage distortion level 10
Fig re B.8 – Sketc of the typical size/cost of an AIC a pl cation vers s switc in
f req en y of the AIC .101
Fig re B.9 – Ilu tration of the pro a i ty of overlo d an stres pro lems for the
p wer s p ly network an the eq ipment con ected thereto, de en in on stipulated
distortion levels fixed in mis el ane u as umption 101
Fig re B.10 – Res lts of the data col ection vers s the maximum values pro osed in
the IEC TS 6 5 8 f or prod cts rated a ove 7 kVA 10
Fig re B.1 – Res lts of the data col ection vers s the maximum values pro osed in
the IEC TS 6 5 8 f or prod cts rated b low 7 kVA 10
Fig re B.12 – Res lts of the data col ection vers s the maximum values pro osed in
the IEC TS 6 5 8 f or prod cts rated a ove 7 kVA 10
Fig re B.13 – Recommen ed maximum emis ion values for AIC of dif ferent categories
Ta le A.3 – Con ition state 0: c r ent in phase R within toleran e range, pure voltage
injection active (e.g with PWM) 71
Ta le A.4 – Comp rison of diff erent PWM AICs of VSC to olog 7
Ta le A.5 – Voltage distortion on b th p wer l nes (I an I I) without an with fiter circ it
( he fi ter had b en desig ed to ac ieve 0,2 % distortion level on the MV-p wer l ne) 8
Ta le A.6 – Cur ent distribution within the network des rib d for sp cific feq en ies
an on al ocated me s rement p ints as p inted out in Fig re A.2 8
Ta le B.1 – AIC desig recommen ation f or a maximum distortion f actor in the
f req en y ran e f rom 2 to 9 kHz 10
Ta le B.2 – Recommen ed maximum emis ion values f or AIC of dif ferent categories in
the ran e f om 9 kHz up to 15 kHz 10
Trang 11INTERNATIONAL ELECTROTECHNICAL COMMISSION
_
Operation conditions and characteristics of active
infeed converter (A IC) appl cations including design
recommendations f or their emission values below 150 kHz
1 Th Intern tio al Ele trote h ic l Commis io (IEC) is a worldwid org niz tio for sta d rdiz tio c mprisin
al n tio al ele trote h ic l c mmite s (IEC Natio al Commite s) Th o je t of IEC is to promote
intern tio al c -o eratio o al q e tio s c n ernin sta d rdiz tio in th ele tric l a d ele tro ic f i ld To
this e d a d in a ditio to oth r a tivitie , IEC p bls e Intern tio al Sta d rd , Te h ic l Sp cif i atio s,
Te h ic l Re orts, Pu lcly Av ia le Sp cif i atio s (P S) a d Guid s (h re f ter refer e to a “IEC
Pu lc tio (s)”) Th ir pre aratio is e tru te to te h ic l c mmite s; a y IEC Natio al Commite intere te
in th s bje t d alt with ma p rticip te in this pre aratory work Intern tio al g v rnme tal a d n n
-g v rnme tal org niz tio s laisin with th IEC als p rticip te in this pre aratio IEC c la orate clo ely
with th Intern tio al Org niz tio f or Sta d rdiz tio (ISO) in a c rd n e with c n itio s d termin d b
a re me t b twe n th two org niz tio s
2) Th f ormal d cisio s or a re me ts of IEC o te h ic l maters e pre s, a n arly a p s ible, a intern tio al
c n e s s of o inio o th rele a t s bje ts sin e e c te h ic l c mmite h s re re e tatio fom al
intere te IEC Natio al Commite s
3) IEC Pu lc tio s h v th form of re omme d tio s f or intern tio al u e a d are a c pte b IEC Natio al
Commite s in th t s n e Whie al re s n ble ef forts are ma e to e s re th t th te h ic l c nte t of IEC
Pu lc tio s is a c rate, IEC c n ot b h ld re p n ible for th wa in whic th y are u e or f or a y
misinterpretatio b a y e d u er
4) In ord r to promote intern tio al u if ormity, IEC Natio al Commite s u d rta e to a ply IEC Pu lc tio s
tra s are tly to th ma imum e te t p s ible in th ir n tio al a d re io al p blc tio s An div rg n e
b twe n a y IEC Pu lc tio a d th c re p n in n tio al or re io al p blc tio s al b cle rly in ic te in
th later
5) IEC its lf d e n t pro id a y ate tatio of c nf ormity In e e d nt c rtific tio b die pro id c nformity
a s s me t s rvic s a d, in s me are s, a c s to IEC mark of c nformity IEC is n t re p n ible for a y
s rvic s c rie o t b in e e d nt c rtific tio b die
6) Al u ers s o lde s re th t th y h v th late t e itio of this p blc tio
7) No la i ty s al ata h to IEC or its dire tors, emplo e s, s rv nts or a e ts in lu in in ivid al e p rts a d
memb rs of its te h ic l c mmite s a d IEC Natio al Commite s f or a y p rs n l injury, pro erty d ma e or
oth r d ma e of a y n ture wh ts e er, wh th r dire t or in ire t, or for c sts (in lu in le al f ee ) a d
e p n e arisin o t of th p blc tio , u e of, or rela c u o , this IEC Pu lc tio or a y oth r IEC
Pu lc tio s
8) Ate tio is drawn to th Normativ refere c s cite in this p blc tio Us of th refere c d p blc tio s is
in is e s ble for th c r e t a plc tio of this p blc tio
9) Ate tio is drawn to th p s ibi ty th t s me of th eleme ts of this IEC Pu lc tio ma b th s bje t of
p te t rig ts IEC s al n t b h ld re p n ible f or id ntif yin a y or al s c p te t rig ts
The main tas of IEC tec nical commite s is to pre are International Stan ard In
ex e tional circ mstan es, a tec nical commit e may pro ose the publ cation of a tec nical
sp cification when
• the req ired s p ort can ot b o tained for the publ cation of an International Stan ard,
despite re e ted ef forts, or
• The s bject is sti u der tec nical develo ment or where, for an other re son, there is
the future but no immediate p s ibi ty of an agre ment on an International Stan ard
Tec nical sp cif i ation are s bject to review within thre ye rs of publ cation to decide
whether they can b tran formed into International Stan ard
IEC TS 6 5 8, whic is a tec nical sp cification, has b en pre ared by IEC tec nical
commit e TC 2 : Power electronic s stems an eq ipment
Trang 12This secon edition can els an re laces the f irst edition publs ed in 2 0 This edition
con titutes a tec nical revision
This edition in lu es the f ol owin sig if i ant tec nical c an es with resp ct to the previou
edition:
a) IEC TS 6 5 8, in its revised version in lu es o served values out of practical a pl cation
for emis ion values b low 15 kHz
b) Therefore the doc ment has b en exten ed comp red to the f irst edition, several detai ed
analy is res lts are given in the exten ed An exes
c) Desig recommen ation have b en derived f om the international workin group by an
as es ment of the p wer s p ly imp dan es b twe n 2 kHz an 9 kHz, a comprehen ive
analy is of the with tan ca a i ty of p wer ca acitors again t harmonic c r ents injected
by AIC, immu ity tests of eq ipment an con ideration a out s ifted resonan es in the
p wer s p ly network with in re sed p pulation of u damp d fi ter ca acitors
The text of this tec nical sp cification is b sed on the fol owin doc ments:
En uiry draft Re ort o v tin
Ful information on the votin for the a proval of this tec nical sp cification can b f ou d in
the re ort on votin in icated in the a ove ta le
The Fren h version of this tec nical sp cif i ation has not b en voted up n
This publ cation has b en draf ted in ac ordan e with the ISO/IEC Directives, Part 2
The commit e has decided that the contents of this publ cation wi remain u c an ed u ti
the sta i ty date in icated on the IEC we site u der "ht p:/we store.iec.c " in the data
related to the sp cific publ cation At this date, the publ cation wi b
• tran formed into an International stan ard,
• reconfirmed,
• with rawn,
• re laced by a revised edition, or
• amen ed
IMPORTANT – Th 'colour inside' logo on the cover pa e of this publ c tion indic te
that it contains colours whic are consid re to be us f ul f or the cor e t
und rsta din of its conte ts Us rs s ould theref ore print this doc me t usin a
colour printer
Trang 13This revision of the tec nical sp cification IEC TS 6 5 8 is neces ary b cau e active infe d
con erters (AIC) are a state of the art tec nolog in p wer electronic prod cts an wi b of
major imp rtan e in order to re lze the "smart grid" an the "energ eff i ien y" initiatives
AICs in in u trial an domestic u e are neces ary to f eedb c energ fom an energy source
(e.g solar p nels, fuel cel s or win turbines) or f om a motor lo d to the p wer s p ly
network an make it avai a le f or other con umers in te d of dis ip tin it as a waste-he t to
the en ironment
Disp rsed p wer generatin eq ipment u es AICs to s n hronise their voltages an c r ents
to the p wer s p ly network or to ex han e electrical energ b twe n energ storage devices
s c as b teries an con umers
Uti ties wi req ire information on how to cor ectly a ply the AICs in order to mitigate
harmonic in the p wer s p ly network
AICs can also b u ed to mitigate pre-existin harmonic in the s p ly s stem – inf ormation
on this is of interest to uti ties
Diff erent p s ible to ologies of AICs are des rib d together with their sp cific ad antages
Warnin : The recommen ation of maximum emis ion values for con u ted emis ion
<15 kHz def i ed in this doc ment are b sed on o servation an exp rien e gained f rom
state of the art AICs o eratin today in most p wer s p ly network together with other
eq ipment without cre tin intolera le intereren e an s ould le d to an in re sed
ac e tan e of u in AICs
Nevertheles it has to b hig l g ted that electromag etic en ironment is s bject to c an es
e.g b cau e of smart grid de loyment an that emis ion lmits that are c r ently u der
develo ment by the IEC EMC Commite s may b diff erent to the maximum emis ion values
recommen ed in this doc ment
This doc ment is b in is ued in the Tec nical Sp cification series of publ cation (ac ordin
to the ISO/IEC Directives, Part 1, 3.1.1.1) as a “prosp ctive stan ard for provisional
a pl cation” in the field of p wer electronic b cau e there is an urgent ne d for g idan e on
the desig an u e of active infe d con erters (AIC) today an in “smart grid en ironments”
It remain u cle r d rin revision of this doc ment, how an when the smart grid vision wi
b re l zed an to what extent in the f uture AICs wi b the "key l n comp nents" if several
electrical energ storage devices or storage tec nologies an energ u ers are to b
con ected together an wi interact u der "smart grid b haviour condition The p wer
s p ly network may ada t its future c aracteristic comp red to the state of the art whie
in re sin the in tal ed den ity of AIC
Trang 14POWER ELECTRONICS SYSTEMS A ND EQUIPMENT –
Operation conditions and characteristics of active
infeed converter (A IC) appl cations including design
recommendations f or their emission values below 150 kHz
This Tec nical Sp cification IEC TS 6 5 8 des rib s the o eration con ition an typical
c aracteristic of active inf eed con erters (AIC) of al tec nologies an to ologies whic can
b con ected b twe n the electrical p wer s p ly network (lnes) a.c side an a con tant
c r ent or voltage typ d.c side an whic can con ert electrical p wer (active an re ctive)
in b th direction (generative or regenerative)
Ap lcation with active inf eed con erters are commonly u ed with the d.c sides of adju ta le
sp ed p wer drive s stems (PDS), u inter uptible p wer s stems (UPS), active f ilters,
photovoltaic s stems, win turbine s stems, b t ery b c ed p wer management s stems etc
of al voltages an p wer ratin s
Active infe d con erters are general y con ected b twe n the electrical p wer s p ly network
(a.c side) an a c r ent or voltage d.c side, with the o jective to avoid emit in low
f req en y harmonic (e.g les than 1 kHz) by s nthesizin a sin soidal a.c c r ent Some of
them can ad itional y comp n ate the pre-existin harmonic distortion of a given s p ly side
voltage They are more ver a le to control the p wer factor of a p w er s p ly network sect ion
by movin the electrical p wer (active an re ctive) in b th direction (generative or
regenerative), whic ena les energ savin in the s stem an sta i zes the p wer s p ly
voltage or ena les coupl n of renewa le energ sources or electrical energy storage devices
to the s p ly
A practical an analytical a pro c for emis ion values f or AICs in p wer s p ly network is
given, whic is b sed on the latest res lts f or l ne imp dan e values b twe n 2 kHz an
9 kHz an with tand ca a i ty of ca acitors con ected directly to the s p ly
This res lts in desig recommen ation f or emis ion values b low 15 kHz
The fol owin is ex lu ed f rom the s o e
• Req irements f or the desig , develo ment or f urther fu ctional ty of active infe d
a pl cation
• Pro a i ty of interaction or influen es of the AIC with other eq ipment cau ed by
p rasitic elements in an in tal ation or cau ed by p or electronic desig as wel as their
mitigation
• "Overhe d l ne" p wer s p ly network b cau e of lac of inf ormation (me s rements) of
their thre phase imp dan es This could b the s bject for f uture edition
The f ol owin doc ments, in whole or in p rt, are normatively ref eren ed in this doc ment an
are in isp n a le f or its a pl cation For dated ref eren es, only the edition cited a ples For
u dated referen es, the latest edition of the referen ed doc ment (in lu in an
amen ments) a pl es
Trang 15IEC 6 0 0 (al p rts), Intern tion l Electrotec nic l Vo a ulary (avaiable at
IEC TR 6 7 5:2 12, Co sid eration of refere c imp d an es a d p bl ic su ply n twork
imp da c s for use in det erminin t he d isturb n e c ara teristics of el ectric l e uipme t
h ving a rated c r e t ≤7 5 A p r p ase
IEC 618 0-3, Ad just able sp ed ele tric l p wer driv systems – Part 3: EMC re uireme ts
a d sp cific t est meth ds
IEC 618 0-5-1, Adjusta le sp ed ele tric l p wer driv syst ems – Part 5-1: Safety
re uireme ts – Ele tric l, thermal a d e erg
IEC 6 0 0-1, Uninteru tibl e p wer systems (UPS) – Part 1: Ge eral a d safety re uirements
for UPS
IEC 6 10 , Ele tro ic e uipme t for use in p wer install ations
IEC 610 0-4-7:2 0 , Electroma n t ic c mp tibil ity (EMC) – Part 4-7: Test ing a d
me sureme t te h iq es – Ge eral g ide o h rmo ics a d int erh rmo ics me sureme ts
a d instrume t at ion, for p wer su ply systems a d e uipme t c n e t ed t hereto
Note 1 to e try: Sp cific main a plc tio s in lu e:
• re u e or a oid emitin low f re u n y h rmo ic (e.g le s th n 2 kHz) fom th p wer s p ly n twork b
s nth sizin a sin s id l ln c re t
• c ntrib te to c ntrol n th re ctiv p wer of a p wer s p ly n twork
• e c a gin th ele tric lp wer (a tiv a d re ctiv ) in g n rativ or re e erativ mo e
• sta i z tio of th p wer s p ly v lta e a d e erg s vin in th s p ly s stem
• e c a gin ele tric l e erg b twe n p wer s p ly n twork or oth r p wer g n ratio s a plc tio s lk fu l
c ls a d ele tric l e erg stora e d vic s
• c u ln of d c ntralz d p wer s urc s (e.g f rom re ewa le e erg ) to th p wer s p ly n twork
3.2
a.c f ilter
f ilter con istin of p s ive comp nents, s c as in u tors, ca acitors an resistors con ected
to the a.c side of a con erter, desig ed to red ce the circ lation of harmonic c r ents in the
as ociated s stem
3.3
a tiv f ilter
AIC o eratin as a f ilter to control the sp cif i a.c side harmonic an interharmonic voltages
or c r ents u ual y without active p wer f low
Trang 16selfcommutated electronic p wer con erters of al tec nologies, to ologies, voltages an
sizes whic are con ected b twe n to the a.c p wer s p ly network (l nes) an u ual y a stif
d.c side (c r ent source or voltage source) an whic can con ert electric p wer in b th
direction (generative or regenerative) an whic can control the re ctive p wer or the p wer
Note 3 to e try: In IEC 6 0 0-5 1 th s terms (VSC a d CSC) are d f i e a v lta e stif f a.c./d.c c n erter
(5 1 12-0 ) a d c re t stif f a.c./d.c c n erter (5 1 12-0 ) Mo t of th AICs are bi-dire tio al c n erters a d
h v s urc s o th d.c sid So, th y are k own a v lta e s urc c n erters a d c re t s urc c n erters in
control able harmonic or interh rmonic
set of harmonic or interharmonic whic can b influen ed directly by the control strateg of
the AIC
3.8
con e tional conv rter
con erter b sed on lne commutation tec nolog , that can ot control p wer factor or
harmonic
3.9
con erter topology
dif ferent p s ible ar an ements of semicon u tor valves an their con ection
ef fe tiv s p ly-side f ilter impe a c
eff ective imp dan e of the s p ly-side f ilter of the AIC f or f eq en ies in the ran e of the
control a le harmonic or interharmonic
Trang 173.13
e id ntial per unit s pply side impe a c of the AIC
u
s v,eq
p r u it s ort-circ it voltage drop value of the hardware in u tan e whic is con ected
b twe n the AIC an the p wer s p ly network
u
s v,e u
= Z
c o e / (U
LN/ I
q)
3.14
f un ame tal a d harmonic comp ne ts
defined in IEC 6 0 0:101, IEC 6 0 0:161 an IEC 6 0 0:5 1, resp ctively an are dedicated
for the AIC in this doc ment
3.15
F3E-inf ee
f undame tal f re ue c f ront e d infe d
fu damental f req en y font en voltage source con erter with its commutation ca acitor on
the a.c side whic u es l ne-f req en y switc ed semicon u tor valve devices an has
regenerative ca a i ty
Note 1 to e try: Th d.c.-ln c p citor whic is n rmaly a ele trolytic c p citor is b sic ly re la e b a a.c
ln sid f ilter, d sig e to lmit th v lta e distortio c u e b th PWM c re ts of th in erter sta e
3.16
ge erate harmonic or interharmonic
set of harmonic or interharmonic whic res lt f om the pulse f eq en y an the pulse
p tern
3.17
in-pla t point of coupl ng
IPC
p int on a network in ide a s stem or an in tal ation, electrical y ne rest to the AIC, at whic
other a p ratu are, or could b , con ected
Note 1 to e try: Th IP is u u ly th p int for whic ele troma n tic c mp tibi ty is to b c n id re In c s
of c n e tio to th p blc s p ly s stem th IP is e uiv le t to th P C (Point of Commo Co pln )
3.18
k
zred
ratio of the p wer s p ly imp dan e ac ordin to 5.2.4 (9 % values) related to the f req en y
pro ortional extra olated referen e imp dan e ac ordin IEC 6 7 5
3.19
l n impe a c of ph s x
Z
L , h
l ne imp dan e of phase x at harmonic order h
Note 1 to e try: Th imp d n e at a h rmo ic f re u n y b twe n th star p int of th e uiv le t p wer s p ly
a d o e of th p a e termin ls at a d f i e p int o a n twork Th p int o a n twork c uld b d f i e to b f or
e ample th termin ls of th AIC or th in-pla t p int of c u ln
3.2
lon - ime e ergy stora e de ic
device con ected to the d.c.-l n directly or by a semicon u tor valve device, or a c n erter,
providin rated p wer f or typical y secon s to min tes
Trang 18PWM control e conv rter
con erter u in a pulse-width mod lation tec niq e in order to control the switc in of its
semicon u tor valve devices
3.2
puls fre ue c
f req en y, res ltin fom the switc in f req en y an the con erter to olog , whic
c aracterizes, together with the selected pulse p t ern, the lowest feq en y of non
-control a le harmonic or interharmonic at the IPC (in-plant p int of coupl n )
Note 1 to e try: Th switc in f re u n y its lf ma n t b pre e t a a h rmo ic or interh rmo ic
3.2
puls pat ern
p tern of the switc ed voltages or c r ents, me s ra le at the terminal of the con erter,
res ltin fom pulse f eq en y an mod lation s hemes u ed
rea tiv power conv rter
c n erter f or re ctiv p wer c mp nsatio th t g n rates or c nsumes re ctiv p wer with ut th f low
of a tiv p wer e c pt f or th p wer los es in th c n erter
/ Z
Lx,1
wh re
Trang 19s ort circ it ratio
R
SCe
c aracteristic value for the a plcation of a sin le eq ipment derived f om the Ratio of s
ort-circ it p wer of the s p ly to the rated a p rent p wer of the AIC of the sin le eq ipment
(S
e u)
R
SCe
= S
SC / S
e u) f or interphase eq ipment
R
SCe
= S
SC / 3* S
e u) f or sin le p ase e uipme t
3.2
s ort time e ergy stora e de ic
one or more in u tors or ca acitors providin rated p wer for a out 1 ms to 10 ms an
directly con ected to the d.c side
Note 1 to e try: Sh rt time e erg stora e is u e to h v a stif f v lta e or c r e t c ara teristic or o erate th
AIC c ntin aly in s ort time a.c v lta e dip, a d time c uld b more th n 10 ms
Note 2 to e try: L n -time e erg stora e is u e to pro id e erg to a.c p wer s stem
3.3
switc ing fre ue c
f req en y with whic the semicon u tor valve devices of a PWM con erter are o erated
Note 1 to e try: In s me c n erters th switc in fe u n y ma n t b th s me for al s mic n u tor v lv
LN, 1
relative voltage (l ne to neutral voltage) at order h
Note 1 to e try: ratio of a h rmo ic ln to n utral v lta e ampltu e to th fu d me tal fe u n y ln to n utral
v lta e ampltu e
3.3
U
L , h/ U
actual res ltin re ctan e of the p wer s p ly network at the IPC
Note 1 to e try: Th in e “h” me n in a y c s th t th d dic te re cta c is c n id re at a c rtain h rmo ic
ord r
Trang 20Z
L, h
actual res ltin imp dan e of the p wer s p ly network at the IPC
Note 1 to e try: For h rmo ic c lc latio for a sin le p a e lo d: Z
L
= Z
Lx+ Z
Active Inf eed Ap l cation are mainly avaia le with ca acitive (VSC) or in u tive (CSC)
smo thin on the d.c side Some con erter con e ts u e no or ne rly no d.c.-side smo thin
The majority of in tal ed u its uti ze ca acitive smo thin
De en in on the rated p wer an the p wer s p ly network avai a i ty the con ection to the
p wer s p ly network may b sin le-phase or thre -phase The thre -phase version is
selected f or the examples
4.2.2 Operatin principle
The main o eratin prin iple is to switc the d.c.-side p tentials or the d.c.-side c r ents to
the a.c side con u tors with a pulse f req en y of normal y b twe n 3 0 Hz an 2 kHz In
this way the desired voltages or c r ents on the a.c side are re l sed as me n values The
pulse f req en y is normal y hig comp red to the l ne f req en y an al ows q ic an
ac urate control of the voltages an c r ents on the a.c side However, switc in b twe n
f i ed p tentials or c r ents generates u desira le distortion in the high f req en y ran e
Pas ive a.c-side fiters mig t b req ired to mitigate those
A control s stem al ows a precise control of the f un amental an ad itional harmonic
comp nents The feq en y up to whic harmonic can b control ed is determined by the
pulse feq en y of the con erter
The u ual stru ture of VSC an CSC s stems is s own in Fig re 1 an Fig re 2, resp ctively:
Trang 21NOT Th v lv d vic s mb ls are u e merely for i u tratio
Figure 1 – AIC in VSC topology, ba ic structure
NOT Th v lv d vic s mb ls are u e merely for i u tratio
Figure 2 – AIC in CSC to ology, ba ic stru ture
Fig re 1 an Fig re 2 s ow that the stru ture of voltage an c r ent source con erter s stems
is very simi ar The main diff eren es can b fou d on the d.c side, the a.c side f ilters an in
the typ of semicon u tors u ed for the valve device p rt of the converter Detai s can b
fou d in the section coverin the diff erent to ologies
The stru ture can b se arated into thre p rts
• Sup ly imp dan e at the internal p int of coupl n (IPC) (se Fig re 2) whic is mainly
in u tive
• Con erter an control up to the d.c side This p rt u ual y contain an a.c side fiter,
IEC
IE C
Trang 22tran f ormer, if u ed, is p rt of (or desig ed to b u ed as) the s p ly-side f ilter c oke
Next in the c ain is the valve device p rt, whic may vary in stru ture – se the f olowin
s bclau e on diff erent to ologies as wel as on the d.c.-side lo d c aracteristic (ca acitive
smo thin or in u tive smo thin ) The control typical y u es pulse width mod lation
prin iples lke sp ce vector modulation, o timised s n hronou pulse p tern or
h steresis or sl ding mode control for pulse p tern generation In case of sp ce vector
mod lation the pulse feq en y is f i ed In case of o timised s n hronou pulse p t ern
the pulse pat ern normal y has a fixed s a e an is s n hronou with resp ct to the l ne
feq en y
• L ad side The majority of eq ipment con ected are variou energy sources or PWM
-con erter fed mac ines Another typical a pl cation are con erters to fe d p s ive or
mixed lo d , as for example in u inter uptible p wer s stems (UPS) If the AIC is u ed f or
p wer f actor comp n ation or harmonic control the lo d is not req ired, but can b
in luded In case of voltage source con erters lon -term energ storage u its may easiy
b con ected in p ral el with the d.c.-side smo thin ca acitor In typical a pl cation the
d.c.-side smo thin ca acitor s p les the rated p wer for a out 1 ms to 10 ms without
trip in of the con erter The lon -term storage may typical y provide rated p wer for
secon s to min tes
4.2.3 Equiv le t circ it of a AIC
The stationary b haviour of AICs is b st des rib d u in the eq ivalent circ it con istin of
eq ivalent sources an imp dan es given in Fig re 3
Figure 3 – Equiv le t circ it f or the intera tion of the power s p ly n twork with a AIC
For b t er u derstan in it is ad antage u to se arate the p wer s p ly network voltages
an the con erter voltages into their f un amentals an the remainin harmonic For the
con erter voltages, two sets of harmonic voltages may b distin uis ed
• One set of harmonic whic can b control ed directly This set is defined as control a le
or desired harmonic an c aracterised by the in ex ν
• One set of harmonic res lts f rom the pulse f req en y an the pulse p tern This set is
defined as u desired (generated) harmonic an c aracterised by the in ex µ
The voltage U
s, h
is the s p rp sition of al (desired an u desired) harmonic cau ed by al
IEC
Trang 23NOT Simiar c n lu io s c n b drawn c n ernin c r e t s urc AICs In this c s th s t of v lta e in
Fig re 3 h s to b re la e b a s t of c re ts
4.2.4 Fi ters
The s p ly side fi ter is u ual y desig ed to let the desired harmonic p s throu h the fi ter
an to mitigate the u desired harmonic to a value pres rib d by the EMC sp cification of
the en ironment If neces ary, ad itional fiter me s res may b a pl ed
Ad itional desig criteria may res lt f rom the p wer s p ly s stem con ition at the IPC as
wel as f rom economic con traints
It s ould b noted that the f req en y of the u desired harmonic is mainly f rom pulse
f req en y on upward The sp cification of the con erter side fi ter in u tor has to take these
hig f eq en ies into ac ou t, otherwise the in u tor wi overhe t
The d.c.-side fi ter, if u ed, has to at en ate the rip le of the d.c voltage or c r ent so that the
con erter an the p s ibly con ected devices fu ction pro erly The sp cification of the d.c
-l n fiter has to take the amou t of harmonic into ac ou t, otherwise it may overhe t
In some cases the energ -storage ca a i ty of the d.c.-side fi ter is ada ted to the dy amic
req irements of the a pl cation One a pl cation is the ride-throu h (contin e o eration d rin
an af ter a s ort inter uption of the p wer s p ly network) Ra id c an es of the energ flow
in the p wer s pply network or the lo d d rin p wer tran ients also ne d larger d.c side
energ storage elements otherwise the c aracterisin d.c.-l n q antity (voltage or c r ent
may le ve the toleran e b n in whic pro er o eration of the PWM con erter is g arante d
An overs o t of voltage or c r ent, even for a very s ort time, may destroy the semicon u tor
valve devices of the con erter
For the fu damental f req en y an the control a le harmonic , the s p ly-side fi ter may b
regarded as purely in u tive De en in on the to olog an the c osen control prin iple, the
voltage dro acros the total imp dan e drives the s p ly-side c r ent
The total imp dan e s ould b l mited to al ow pro er d namic control of the s p ly side
c r ent
4.2.5 Puls pat erns
The selected pulse p tern generation s heme gre tly in uen es the c aracteristic of the
con erter The thre main b sic p tern generation s hemes are sp ce vector mod lation,
o timized s n hronou pulse-width mod lation an l ne f l x g idan e
NOT Sp c v ctor mo ulatio a d s mmetric p ls width mo ulatio le dto id ntic l p ls p tern
In case of sp ce-vector mod lation a seq en e of zero states an non-zero voltage sp ce
vectors is selected in s c a way that the voltage sp ce vector req ested by the control
res lts as a me n value of the seq en e The zero states selected have to b of eq al
d ration
In case of s mmetric pulse-width mod lation, a set-p int c rve is comp red to a trian ular
ref eren e f un tion Two way of tre tin the set-p int c rve are k own:
• natural sampl n directly comp res the (analog e) c rve to the trian ular ref eren e
fu ction;
• reg lar sampl n samples values of the set p int c rve at the extreme values of the
trian ular f un tion an comp res these sampled values to the ref eren e fu ction
Digital control ers normal y u e reg lar samplng The dif feren e b twe n the two method is
smal but le d to sl g tly diff erent generated harmonic
Trang 24A s ita le in tantane u ly defined zero-seq en e comp nent ad ed to the ref eren e values
as ures eq al zero-state d ration This is sometimes cal ed “ad ition of multiple of third order
harmonic" If the half value of the me n of the thre phase sig al is ad ed to al sig als, the
res lt is identical to sp ce vector mod lation
4.2.6 Control methods
A b sic introd ction into control method is des rib d in Clau e A.1 More detai ed
des ription can b f ou d in the referen es
4.2.7 Control of c r e t comp ne ts
The AIC gives the p s ibi ty to adju t the fu damental an controla le harmonic comp nents
f ed into or taken fom the l ne This f eature ef fectively can b u ed f or mitigation purp ses As
a secon ary ef fect, hig f req en y distortion is generated, whic mig t have to b mitigated
by a s ita le fiter
The lne voltage given by Fig re 3 is normal y u k own, as is the l ne imp dan e that may
c an e without notice, de en in on the actual l ne config ration, in lu in other lo d
atac ed Theref ore, control s hemes are u ual y b sed on the me s ra le voltage at the IPC
(se Fig re 1 an Fig re 2) In ad ition, d.c l n q antities are me s red
The flexibi ty of AICs an as ociated control s hemes off er a large variety of a pl cation an
as ociated control s hemes The main o jectives are, however, control of active p wer an
control of re ctive p wer or non-active (vector s m of re ctive plu harmonic ) p wer The
desired b haviour can b ac ieved by control n the c r ents cau ed by the AIC Referen es
for the active, re ctive, non-active an purely harmonic c r ents have to b derived fom the
l ne voltages
One p s ibi ty to define the referen e f or the c r ent is to u e resistive lo d emulation
Energ is then f ed to the d.c l n f rom every avai a le s p ly voltage comp nent, th s ad in
dampin f or u desira le comp nents If the voltages at the IPC are non-sin soidal, the lne
c r ents wi b con eq ently non-sin soidal, to
The drawb c of resistive lo d emulation is that it may b come un ta le an in re se
harmonic if an at empt is made to fe d energ to the s p ly f rom the d.c l n In this case
energ s ould b del vered to the s p ly only via the fu damental comp nent of the c r ent
4.2.8 A ctiv power fa tor cor e tion
This con ideration is b sed on f un amental f req en y comp nents des rib d by vectors
Adeq ate control of the lne-side con erter voltage U
C
al ows the voltage U
Lacros the
eff ective s p ly-side fi ter imp dan e to b adju ted to a desired value This voltage then
cau es the desired l ne c r ent I
L
to f low In this way the AIC is a le to impres an desired
amou t of re ctive c r ent, in lu in zero – an cau e an desired amou t of re ctive p wer,
in lu in zero – in ide its sp cif i ation The con erter can th s b u ed as a comp n ator to
maintain a certain voltage level in the a.c side s p ly by ad itional y impres in ca acitive or
in u tive c r ents
For an ide l active p wer factor cor ection the c r ents of the fi ter in u tan es are orthogonal
( hey lag or le d by 9 ˚ to the resp ctive s p ly voltages Examples of vector diagrams are
s own in Fig re 4
Trang 25NOT P C in this c s c n als b re la e b IP
Figure 4 – Volta e a d c r e t v ctors of l ne a d con erter
at fun ame tal fre ue c f or dif fere t loa condition
It is o viou that the l ne-side con erter voltage has to b larger than the voltage at the IPC in
man cases, de en in on the o eration p int This has to b taken into ac ou t when
sp cifyin rated values f or the con erter As mentioned a ove, f urther reserves are ne ded
for d namic
4.3 AIC rating
The req ired AIC ratin s are an ac umulation of req irements of several origin lke
sin soidal con ition , harmonic c r ents an d namic con ition
4.3.2 Conv rter ratin und r sinusoidal condition
The worst-case con ition f or o eration is with rated c r ent, purely ca acitive, at the
maximum alowed level of the voltage at the IPC In this case the con erter sti has to del ver
the p ak value of lne-side con erter voltage req ired in tantaneou ly Otherwise the amou t
of ca acitive c r ent has to b l mited or the lne c r ents wi not b as desired
4.3.3 Conv rter rating in c s of harmonic c r e ts
In ad ition to the ratin dis u sed for sin soidal con ition in the precedin section, further
req irements f ol ow f rom harmonic c r ents control The eq ivalent circ it diagram (Fig re 4)
remain vald
Eac desired c r ent harmonic req ires an ad itional voltage at the ef fective s p ly-side f ilter
imp dan e The s p rp sition prin iple is a plca le Therefore, al req ired voltages can b
IE C
Trang 26ad ed De en in on the phase an le of the harmonic c r ent, the in tantane u ly req ired
p ak value of the con erter voltage varies As a worst-case ratin , al p ak values of voltage
res ltin f rom the f un amental an al desired harmonic have to b ad ed to the p ak value
of the voltage at the IPC f or maximal in tantane u con erter voltage If the ratin of the
con erter do s not al ow han ln this voltage, lne c r ents wi not b generated as desired
In sp cial cases, where the voltage at the IPC contain many harmonic , the p ak value of
the voltage at the IPC in lu in worst-case s p rp sition of harmonic has to b u ed for the
ratin of the con erter
4.3.4 Conv rter ratin un er d namic conditions
The eq ivalent circ it (Fig re 4) sti remain val d However, now the c r ents in the eff ective
s p ly-side imp dan es have to b c an ed dy amical y This req ires a certain amou t of
voltage acros these imp dan es This voltage has to b s p led by the con erter
De en in on the desired d namic p rf orman e the ratin of the con erter has to b matc ed
to alow large enou h in tantane u values of the AIC voltages
5 Ele tromagnetic compatibi ity (EMC) considerations f or the use of AICs
In this clau e a selection of EMC asp cts is covered The selection is done in order to c o se
the a pro riate AIC f un tional ty with the provision that there s ould b no disturbin
intereren e at the p wer s p ly network with other eq ipment
More ver the active eq al zation of the p wer s p ly network by u in an AIC wi b
des rib d as wel as the typical side eff ects by u in an AIC
The determination of the p wer s p ly imp dan e in the ran e b twe n 2 kHz an 2 kHz,
the typical with tan ca a i ty of p wer ca acitors an other eq ipment an the displacement
of resonan e f req en ies in the p wer s p ly network are con idered This le d to the
recommen ation of desig g idel nes f or emis ion values of AICs in the ran e of 2 kHz up to
15 kHz
Emis ion an immu ity are given in the relevant prod ct stan ard e.g IEC 618 0-3 in the
case of Power Drive Sy tems or IEC 6 0 0-2 for Uninter uptible Power Sy tems
Fig re 5 – Th ba ic is ue of EMC a tools of e onomic
The minimum req ired immu ity of electric a p ratu , the comp tibi ty levels in the p wer
s p ly network an the maximum al owed emis ion of disturb n es are directly related to
IE C
Trang 27The ac e tan e of the recommen ed desig g idel nes for emis ion values b twe n 2 kHz
an 15 kHz wi al ow widespread u e of AICs in multiple a plcation f or the control of
electrical energ in the context of the Smart Grid an Energ Ef ficien y initiatives
In the f req en y ran e b twe n 2 kHz to 9 kHz a s stem of multiple AICs can b desig ed to
me t the emis ion values at the PCC This al ows the u e of can el ation tec niq es when
multiple AICs are u ed together
This a pro c mig t also b con idered a ove 9 kHz However, it may b les val d ne r
15 kHz, d e to radiated eff ects
5.2 Low-f re ue c phe ome a (<15 kHz)
L w- req en y EMC phenomena mainly oc ur d e to con u tive, in u tive an ca acitive
coupl n of the p wer s p ly network to the neig b urin network an also d e to
intereren e b twe n devices con ected to the s p ly network
Harmonic , voltage f l ctuation , voltage dips an commutation notc es are p rt of the l
ow-f req en y p wer s p ly related phenomena However, voltage flu tuation an commutation
notc es are sig if i antly red ced comp red to con entional con erters
AICs generate distortion with f eq en ies originatin f om the switc in of the semicon u tor
valve devices whic have to b s ff i iently mitigated by the s p ly-side fi ter of the AIC (se
Fig re B.2)
The p wer s p ly network’s imp dan e an s ort-circ it ratio R
SCe
have a decisive imp ct
(se 5.2.3.2) on the fi ter p r orman e The s p ly s stem, its config ration an the lo d have
to b con idered together in the evaluation Th s tec nical p s ibi ties for the l mitation of
emis ion have to b analy ed in ivid al y for e c a pl cation
If several AICs are con ected to the same s p ly s stem it has to b noted that the res ltin
voltage distortion wi b lower or eq al to the distortion cau ed by one big eq ivalent AIC d e
to the ran om s p rp sition
It has to b noted that non-sin soidal input c r ent is not only generated by distortion of the
AIC, but as wel by non-sin soidal s p ly voltage, cau in p rasitic c r ents flowin throu h
a pl ed ca acitive input f ilters
Me s rin q antities at the d.c.-side con ection an /or at the s p ly-side fi ter is a
c al en in tas Me s rin eq ipment with a b n width of ten to twenty times the pulse
f req en y is req ired in case harmonic ne d to b me s red
Se ad itional inf ormation in An ex B
5.2.2 Emerging conv rter top logie a d th ir a v nta e f or th power s pply
network
Fig re 7 an Fig re 8 s ow the tec nological progres an the main miestones of diff erent
to ologies (se Fig re 6) with imp ct on the p wer s p ly network by presentin their typical
wave s a es for p wer s p ly c r ent distortion an voltages
Trang 28Figure 6 – Typic l power s p ly n twork c r e t i
L(t) a d volta e u
LN(t) of a pha e
control e conv rter with d.c output a d inductiv smoothing
Figure 7 – Typic l power s pply network c r e t i
L(t) a d volta e u
LN(t) of a
un ontrol e conv rter with d.c output a d c pa itiv smo thing
Figure 8 – Typic l power s pply network c r e t i
L(t) a d volta e u
LN(t) of a AIC
re l ze by a PWM Conv rter with c pa itiv smoothing without a ditional fi ters
With the emergin tec nolog develo ment, the a pro c toward an ide l sin soidal wave
s a e of the eq ipment input c r ent (whic had b en a go l sin e lon time) has b en more
closely ac ieved
IEC
IE C IEC
Trang 295.2.3 Activ e ual zing of the p wer s pply network
An AIC is a le to s p ly active an re ctive p wer (ca acitive or in u tive) in b th direction
(4-q adrant o eration) Th s if the AIC is cor ectly rated the u er can a ply a d namic
re ctive p wer comp n ation without ad itional comp n ator f aci ties Fig re 9 s ows an
example of at aina le active an re ctive p wer of the AIC at diff erent l ne voltages
Figure 9 – Ex mple of at ainable a tiv a d re ctive power of the AIC (VSC- ype) at
dif fere t l ne to l ne volta e in per unit (with 10 % combine tra sformer a d fi ter
ind ctor s ort circ it volta e, X/R ratio = 10/1, d.c volta e = 6,5 kV)
For an AIC b sed on PWM tec nology, virtual y no harmonic c r ent distortion oc urs b low
the pulse f req en y u les they are generated intentional y f or the purp se of el minatin
p rtic lar harmonic comp nents (se 4.2.7)
In this case the con erter wi general y improve the q alty of the p wer s p ly network
(active eq al zin of the p wer s p ly network) by comp n atin low f eq en y harmonic to
a desired extent Further, pre-existin disturb n es may b even mitigated by s c con erters
eq ip ed with an a pro riate control s stem an /or hig er order f ilters A sig ificant p rtion of
harmonic c r ents at the IPC may b cau ed by the b c grou d distortion of the p wer s p ly
network voltage
The dif ferent harmonic can b calc lated u in Fourier analy is an red ced or
comp n ated by se arate controlers An example of a so cal ed active f ilter is s own in
Fig re 1 f or thre phase lo d but the method is also a pl ca le to sin le phase cases
IE C
-2.5-2-1.5-1-0.500.51
1.522.5
p wer t o grid <- P [MW] -> p wer t o d b s
0.8
cs(ϕ)=
0.9
cs(ϕ)=
0.9
-2.5-2-1.5-1-0.500.51
1.522.5
p wer t o grid <- P [MW] -> p wer t o d b s
0.8
cs(ϕ)=
0.9
cs(ϕ)=
0.9
Trang 30Figure 10 – Principle of compe s ting giv n harmonic in the p wer s pply
s stem by using a AIC a d s itable control simulta eously
5.2.3.2 Typic l side ef fe ts
As a typical side ef fect of the active comp n ation with the switc in action of the
semicon u tor valves in the AIC, harmonic distortion may oc ur ne r the pulse f req en y an
at integer multiples of it
NOT 1 Th f olowin te t refers to two-le el to olo y a c rdin to Cla s 6 In c s of th a plc tio of thre
-le el or multie el te h olo y, th v lta e distortio s are s b ta tialy lower
Contrary to a phase control ed brid e with c r ent source c aracteristic (con entional
con erters), the voltage wavef orm of an AIC (VSC) on the s p ly side of the brid e is
determined by the switc in action of the semicon u tor valves an the voltage of the d.c
l n ca acitor, se Fig re 10 Furthermore, the pulse p tern is f airly in e en ent of the lo d
of the con erter
Due to this c aracteristic the voltage distortion cau ed in the p wer s p ly network de en s
on the pulse p tern a pled an the voltage s arin b twe n the imp dan e of the p wer
s p ly network an the imp dan e of the s p ly-side f ilter of the AIC When a simple L-i ter
is u ed an the ca acitan es an resistan es of the s p ly s stem are ig ored, this cau es
the hig est distortion Fig re 1 an f ormula (1), (2) an (3) s ow the formation prin iple of
the distortion in the l ne-to-l ne an l ne-to-neutral voltage generated by an AIC with an L-f ilter
an as umin that the s p ly imp dan e is in u tive
IE C
Trang 31Fig re 1 – Typic l Volta e Distortion in the Line- o-Line a d Line- o-Ne tral Volta e
g nerate by a AIC without a ditional f ilters (u in % a d t in d gre s)
e uLL
L1Nd
L1NL1N
ˆ
31
ˆ
2
XXX
UU
UU
L12d
L12L12
ˆ
21
ˆ
2
XXX
UU
UU
ˆan1,1
ˆ
L1Nd
L12d
⋅
≈
≈
UU
UU
(3)
Takin into ac ou t the feq en y de en en y of the network imp dan e ac ordin to
Fig re 2 , Formula (2) c an es to Formula (4) In order to evaluate the exp cted distortion in
the s p ly s stem, it is ad isa le to u e the s ort-circ it p wer ratio R
SCefor calc lation
L1
sc e
e u
sc v ,h
h
)LL1(
)LL1(
1,1
21
X
ÛU
⋅
⋅
⋅+
Zre
XhX
k
⋅
IE C
Trang 32The f ormula c anges to:
Zreh
sc e
e u
sc v ,h
h
)LL1(
)LL1(
1,1
21
2
kX
Ru
X
X
ÛU
⋅
⋅+
LL1(
)LL1(
kRu
kf
kRu
k
ÛU
=
⋅+
omin l/S
e u, th s X
e u
= 0,0 R
SCeX
L)
With these values the ampltu e of the 3 kHz- ip le in the l ne-to-lne voltage is a proximately
1,3 % Fig re 12 s ows the typical pulse f req en y voltage distortion in the p wer s p ly
network de en in on R
SCe
C ,e u
f or an AIC (PWM typ ; 2-L vel) with a pulse
f eq en y of 3 kHz an p s ive mitigation provided by an L-f ilter
Figure 12 – Ba ic c ara teristic of the relativ volta e distortion (5 th h rmonic)
of one AIC operate at a puls fre ue c of 3 kHz v rs s R
SCewith the l ne
impe a c a cordin to 5.2.4
Regardin the side ef fects on the p wer s p ly network it is f urthermore remarka le for AICs
that the s p ly imp dan e play a more imp rtant role in the harmonic c r ent distortion than
it do s with the con entional con erters The imp ct is gre ter with smal er fiter re ctan es
An example of this is s own in Fig re 13 for the L-i ter case
The con eq en e of this c aracteristic is that harmonic c r ent distortion of the eq ipment is
lower with a we k p wer s p ly network than with a stron er one Therefore calc lation
b sed on the c r ent distortion of the eq ipment me s red in a stron p wer s p ly network
may exag erate the estimated voltage distortion in a we k p wer s p ly network
IEC 0
12345
L
%
Trang 33Figure 13 – Ba ic c ara teristic of the relativ c r e t emis ion (5 th harmonic)
of one AIC at a puls fre ue c of 3 kHz v rs s R
SCe
with the l ne
impe a c a cording to 5.2.4
However, in spite of the fact that the harmonic c r ent distortion decre ses with hig er s p ly
imp dan e the imp ct of the more u f avoura le voltage s arin ratio predominates an may
res lt in an ex es ive voltage distortion level Theref ore ad itional fi ter me s res mig t b
ne ded when AICs are con ected in p rtic lar to the publc p wer s p ly network
Several dif ferent f ilter config ration can b a pl ed, al with the aim to red ce the voltage
distortion at the pulse f eq en y an its side b n s Fig re 14 s ows the thre most u ed
state of the art dif ferential mode l ne fi ter solution for VSC The simplest f ilter is the L- i ter,
as des rib d b f ore An alternative with b ter fi ter eff i ien y an les l ne f eq en y voltage
dro is the LCL fi ter As a p wer s p ly network side in u tor L
2, the stray in u tan e of a
tran f ormer may b u ed If no active dampin in the control is implemented, a p s ive
dampin as s own in the damp d tra p d LCL- iter to olog of Fig re 14 mig t b
neces ary To in re se the dampin of a con tant pulse f req en y rip le f urther, a tra p d
LCL fi ter may b u ed With a third in u tor a series resonant circ it f or the pulse feq en y
is buit A decre se of the f ilter p rorman e for pulse f eq en y multiples s ould b
con idered
Fig re 14 – Single pha e ele tric circ it of the thre commonly us d dif f ere tial mode
pa siv l ne fi ter topologie f or VSC a d one e ample for pa siv damping
5
10
152233
L1(%)
Trang 34As an example, Fig re 15 s ows the at en ation of the VSC l ne to l ne voltage to the l ne to
l ne voltage at the IPC The p wer s p ly network is here y as umed to b resistive-in u tive
volta e at the IPC with state of the art dif ere tial mode pa siv l ne fi ter to ologie
NOT 2 Es e ialy f or L-iters th a ro s th ln s (X- c p citors of a y a ditio al EMI f ilters mig t b ta e into
a c u t in th fiter d sig , b c u e th y ma h v a c n id ra le ef fe t o th fiter p rorma c
The desig of fi ter circ its for an AIC has to take into con ideration that an u desira le
resonan e with the p wer s p ly network’s imp dan e may a p ar b low the tu ed
resonan e f req en y of the f ilter ar an ement whic may le d to an u intentional in re se of
the s p ly imp dan e in the lower f req en y ran e An example of this can b se n in
Fig re 15 arou d 2 kHz As a res lt of this ef fect, resonan es may arise if con entional
con erters with sig if i ant harmonic distortion at lower f req en y are connected on the same
p wer s p ly network with an AIC
A practical example is s own in Clau e A.7
In s c cases it may b neces ary to ad dampin circ its to the ad itional f ilter
ar an ements In this way the eff ect of this resonan e is red ced, se Fig re 15, gre n c rve
In te d of p s ive dampin circ its, that in re se los es an decre se the f ilter eff ect, a
dampin fu ction may b in lu ed in the AIC control However, this kin of active dampin
req ires that the fi ter resonan e f req en ies are les than half of the pulse f eq en y
5.2.4 Me s re power s pply network impe a c s in the ra g betwe n 2 kHz to
The values of the p wer s p ly network imp dan es in the ran e of the pulse feq en y of an
AIC an its harmonic mig t have sig ificant influen e on the con u ted emis ion of an
electric or electronic device
In a dedicated rese rc project, the p wer s p ly network imp dan es at the IPC in variou
IE C
UIP
UV SCdB
Trang 35On the one han this wi help to desig ro u t an aff orda le s p ly side fi ters for the AIC
an on the other han the res lts are u eful f or the definition of emis ion levels of AICs
The stu ies were p rormed at several sites in North, Central an South German an
Northern Fran e over thre ye rs At e c me s rement location, the p wer s p ly network
imp dan es were determined in intervals of one hour In general, e c determination req ired
a whole day me s rement (se [1]
1
For explanation of dif ferent p s ible method se A.8
Al examined network had a rated voltage of 4 0 V an al were ca le network The
fol owin res lts are not val d f or overhe d l nes
Figure 16 – Conne tion of the power s pply network
impe a c me s reme t e uipme t
Fig re 17 s ows the imp dan e c aracteristic of a low-voltage tran former u der no lo d
con ition This b sical y cor esp n s to the le kage re ctan e
_ _ _ _ _ _ _
1
Numb rs ins u re bra k ts refer to th biblo ra h
IEC
Trang 36Figure 17 – Ex mple of the me s re impe a c of a low-volta e tra sf ormer
und r no loa condition S = 6 0 kVA, u
k
= 6,0 %
ne rly half of al the me s red s p ly s stems The diff eren es are more sig if i ant at hig er
f req en ies ( > 6 kHz ) than at lower f req en ies
Figure 18 – Me s re v riation of the p wer s pply network impe a c
ov r the cours of a da at one loc tion
Esp cial y lo d with p wer electronic circ its on the s p ly side an cor esp n in
IEC
IE C
Trang 37negative imaginary p rt is s own i.e the p wer s p ly network b haves ca acitive for a
certain feq en y ran e
Fig re 19 – Power s pply network impe a c with partly ne ative ima inary part
Ap roximately 2 % of the me s red p wer s p ly network s owed a ca acitive (negative)
imaginary p rt of the p wer s p ly network imp dan e for the in p cted f eq en y ran e
The imp dan es s own in Fig re 18 an Fig re 19 were me s red b twe n the phase an
the neutral con u tor an are re resentative examples only Therefore an evaluation of the
statistical distribution of the p wer s stem imp dan e f or the resp ctive feq en y is
presented in Fig re 2 For this purp se, me s rements have b en car ied out at 2 dif ferent
me s rement location (North, Central an South German an Northern Fran e) an , fom
them, over 1 3 0 gra h were recorded
Figure 2 – Distribution of power s stem impe a c (me s re betwe n pha e
a d ne tral conductor) in low-volta e s stems v rs s fre ue c
IE C IEC
Trang 38The displayed 10 % c rve in Fig re 2 is the en elo e over al p wer s stem imp dan e
c rves It is comp sed of al maximum values f or e c f eq en y control p int The 0 % c rve
is comp sed of al minimum values f or e c feq en y The 5 % c rve, f or example, s ows
the imp dan e value f or every f eq en y; where y 5 % of the me s red p wer s stems
have hig er imp dan e an 5 % lower imp dan e
The impedan e c rve of the LISN (Line Imp dan e Sta i zation Network) derived f rom
IEC 610 0-4-7 for harmonic an interharmonic me s rement is also s own in Fig re 2
Ac ordin to Fig re 2 , the me s red imp dan es are con idera ly b low the imp dan e
c rve given in IEC 610 0-4-7:2 0 whic demon trates that u in this imp dan e c rve for
f req en ies up to 9 kHz would le d to overestimation of distortion
Ab ve 9 kHz the stan ardized imp dan e ac ordin to CISPR 16-1-1 a pl es
The imp dan e b twe n phase an neutral con u tor is mainly imp rtant for sin le-phase
lo d , where s f or b lan ed thre -phase lo d , without a con ected neutral con u tor, the
imp dan e at the in ivid al phases is relevant
A me s re of this is the imp dan e in the p sitive-seq en e s stem This p sitive-seq en e
s stem an the negative seq en e s stem are identical in most p wer s stems This had
b en con rmed by [2] as wel as by the me s rements car ied out
The p sitive-seq en e imp dan e is the ratio of voltage to c r ent in the p sitive-seq en e
s stem
The imp dan e in the zero s stem is ir elevant f or these sp cific analy es an in the case of
thre -phase devices without a con ected neutral con u tor
In the case of s mmetrical imp dan e values, the folowin a pl es:
ωω
ωω
jZ
LL
LL1
NOT 1 In th c s of a ymmetric l imp d n e v lu s, th imp d n e matrix c ntain s c n ary eleme ts [2] In
ty ic l s p ly s stems th s eleme ts c n b ig ore , b c u e th y are mu h lower th n th dia o al eleme ts,
a d o ly th dia o al eleme ts c n b u e to c lc late th p sitiv s q e c imp d n e
The statistical evaluation of the p sitive-seq en e imp dan e values res lted in the fol owin
Trang 39Figure 21 – Statistic l distribution of p sitiv -s q e c impe a c v rs s
f re ue c in low-volta e power s p ly n twork
Fig re 2 an Fig re 21 s ow, that on the average, the levels in the p sitive-seq en e
s stem |Z
p s
| are a out 5 % lower than the imp dan e |Z
L N
| b twe n phase an neutral
In IEC 610 0-4-7 , the imp dan e of the neutral con u tor has b en set to zero, whic would
than al me s red imp dan e levels b twe n a phase an the neutral con u tor an are also
con idera ly hig er than al me s red levels of the p sitive seq en e imp dan e
There are also sig ificant dif feren es of the p wer s stem imp dan e with resp ct to publ c
an in u trial p wer s p ly network
In ad ition, it s al b noted that resonan es oc ur more f eq ently in the ran e b low
10 kHz Due to the network imp dan e most resonan es are exp cted in the ran e b twe n
1 kHz an 4 kHz
As the me s rin res lts s ow, the s stem imp dan e c rves do not have a pro ortional
in re se with the f req en y where s they display a ste p in re se in the ran e b low 2 kHz
Ab ve 2 kHz, the slo e decre ses con idera ly The p wer s stem imp dan e in the
f req en y ran e f rom 2 kHz to 9 kHz is therefore not to b a proximated by me n of l ne r
extra olation with the 5 Hz imp dan e
NOT 2 As a e ample: Th 5 Hz imp d n e v lu of th 9 % c rv in Fig re 21 is a o t 0,7 Ω Th
imp d n e v lu at 9 kHz is a o t 3,1 Ω or 4,2 time 0,7 Ω A former ln ar a pro imatio of th 5 Hz
imp d n e to 9 kHz wo ld h v le to a v lu of 0 Ω whic is in d q ately to hig
5.2.5 Prop s l of a appropriate l ne impe a c stabi s tion network (LISN) f rom
2 kHz to 9 kHz
In order to predict s stem p rturb tion by me n of simulation , analytical models of p wer
s stem imp dan e are neces ary In this s bclau e a model that can b u ed for simulation is
s own in Fig re 2
IE C
Trang 40Figure 2 – Equiv le t circ it de cribin the power s p ly network impe a c
The imp dan e values Z ne d to b e c simulated by comp nents The more comp nents
are u ed f or Z, the more ac urately the imp dan e may b simulated but the gre ter the
computin p wer ne ded f or the simulation an the les practical is the re l zation of s c a
network
As a con eq en e, a u ef ul compromise b twe n ac urate simulation of the me s red c rves
an the computin p wer ne ded f or this has b en fou d in the to olog ac ordin to
Fig re 2
Figure 2 – Circ it topology f or power s stem simulation
The imp dan e Z is calc lated as fol ows:
22
11
2211
11
jR
LRLRZ
ωω
ω
++
+
=
(9)
Formula (9) re resents the trial f un tion in the sen e of regres ion analy is It can b se n
that the trial fu ction is non-l ne r an complex
IE C
R 1Z
AIC