13 4.7 Summary of FPI/DSU req irements with resp ct to fault detection ac ordin to network o eration mode an fault typ.. By local zation of the fault is me nt the fault p sition with res
Trang 1Part 2: System aspects
Capteurs ou détecteurs de courant et de tension, à uti iser pour indiquer
le passage d'un cour ant de défaut –
Trang 2THIS PUBLICA TION IS COPYRIGHT PROTECTED
Copyright © 2 16 IEC, Ge e a, Switzerla d
Al rig ts re erv d Unle s oth rwis s e ifie , n p rt of this p blc tio ma b re ro u e or uti z d in a y form
or b a y me n , ele tro ic or me h nic l in lu in p oto o yin a d microfim, with ut p rmis io in writin from
eith r IEC or IEC's memb r Natio al Commite in th c u try of th re u ster If y u h v a y q e tio s a o t IEC
c p rig t or h v a e q iry a o t o tainin a ditio al rig ts to this p blc tio , ple s c nta t th a dre s b low or
y ur lo al IEC memb r Natio al Commite for furth r informatio
Droits d re ro u tio ré erv s Sa f in ic tio c ntraire, a c n p rtie d c te p blc tio n p ut être re ro uite
ni uti s e s u q elq e forme q e c s it et p r a c n pro é é, éle tro iq e o mé a iq e, y c mpris la p oto o ie
et le microfims, s n la c rd é rit d l EC o d Comité n tio al d l EC d p y d d ma d ur Si v u a e d s
q e tio s s r le c p rig t d l EC o si v u d sire o te ir d s droits s p léme taire s r c te p blc tio , uti s z
le c ord n é s ci-a rè o c nta te le Comité n tio al d l EC d v tre p y d ré id n e
Th Intern tio al Ele trote h ic l Commis io (IEC) is th le din glo al org niz tio th t pre are a d p bls e
Intern tio al Sta d rd for al ele tric l ele tro ic a d relate te h olo ie
A bo t IE p blc tio s
Th te h ic l c nte t of IEC p blc tio s is k pt u d r c n ta t re iew b th IEC Ple s ma e s re th t y u h v th
late t e itio ,a c rig n a or a ame dme t mig t h v b e p bls e
IE Catalogue - webstore ie c h/ catalogue
Th sta d-alo e a plca tio f or c n ultin th e tir e
biblo r ap ic l informa tio o IEC Inter natio al Sta d r ds,
Te h ic l Sp cifica tio s, Te h ic l Re or ts a d oth r
d c me ts Av aia le for PC, Ma OS, An r oid Ta lets a d
iPa
IE p blc tio s s arch - w w w.ie ch/ se rch u
Th a v an e s ar ch e a le to fin IEC p blc tio s b a
v ar i ty of c te a (r efer en e n mb r , tex t, te h ica l
c mmite ,…) It als giv es infor ma tio o pr oje ts, r epla e
a d with r awn p blc tio s
IE Just Pu lshed - webstore ie ch/ justp blshe d
Sta u to da te o al n w IEC p blc tio s Ju t Pu ls e
d tais al n w p blca tio s r ele s d Av aia le o ln a d
als o c a mo th b emai
Ele to edia - w w w.e le to edia.org
Th wo d's le din o ln dictio ar y of ele tr onic a d
ele tr i al terms c ntainin 2 0 0 terms a d d finitio s in
En ls a d Fr en h, with e uiv ale t terms in 15 a ditio al
la g a e Als k nown a th Inter natio al Ele tr ote h ic l
Vo a ular y (IEV) o ln
IE Glos ary - std.ie ch/ glos ary
6 0 0 ele tr ote h ic l termin lo y e tr i s in En ls a d
Fr en h ex tr acte fr om th Terms a d Definitio s cla s of
IEC p blca tio s is u d sin e 2 0 Some e tr i s h v e b e
c le te fr om e r lier p blc tio s of IEC TC 3 , 7 , 8 a d
CIS R
IE Customer Servic Cente - webstore ie ch/ cs
If y u wis to giv e u y our fe d a k o this p blc tio or
n e fur th r a sista c , plea se c nta t th Cu tomer Ser v ic
Ce tr e: c c@ie c
A pro os de lIE
L Commis io Ele trote h iq e Intern tio ale (IEC) e t la première org nis tio mo diale q i éla ore et p ble d s
Norme intern tio ale p ur to t c q i a trait à léle tricité,à léle tro iq e et a x te h olo ie a p re té s
A pro os de p blc tio s IE
L c nte u te h iq e d s p blc tio s IEC e t c n tamme t re u Ve i e v u a s rer q e v u p s é e lé itio la
plu ré e te, u c rig n um o ame d me t p ut a oir été p blé
Catalogue IE - webstore ie c h/ catalogue
Ap lca tio a to ome p ur c n ulter to s le r en eig eme ts
biblo r ap iq e s r le Norme inter natio ale ,
Sp cific tio s te h iq e , Ra p r ts te h iq e et a tr es
d c me ts d l EC Dis o ible p ur PC, Ma OS, ta lete
An r oid et iPa
Re herche de p blc tio s IE - ww w.ie ch/ se rch u
L r ec er ch av an é p rmet d tr ouv er d s p blcatio s IEC
e uti s nt dif f r ents c tèr es (n mér o d r éfér en e, tex te,
c mité d’étu e ,…) Ele d n e a s i d s informatio s s r le
pr ojets et le p blca tio s r emplacé s o r etir ée
IE Just Pu lshed - webstore ie ch/ justp blshe d
Re te informé s r le n uv ele p blca tio s IEC Ju t
Pu ls e d ta ile le n uv ele p blca tio s p r ue
Dis o ible e lg e et a s i u e fois p r mois p r emai
Ele to edia - w w w.e le to edia.org
L pr emier dictio n ir e e lg e d terme éle tr oniq e et
éle tr i u s.I c ntie t 2 0 0 terme et d finitio s e a glais
et e fr an ais, ain i q e le ter me é uiv ale ts d n 15
la g e a ditio n le Eg leme t a p lé Vo a ulair e
Ele tr ote h iq e Inter natio al (IEV) e lg e
Glos aire IE - std.ie ch/ glos ary
6 0 0 e tr ée termin lo iq e éle tr ote h iq e , e a glais
et e fr an a is, ex tr aite d s ar ticle Terme et Définitio s d s
p blc tio s IEC p r ue d p is 2 0 Plu c rtain s e tr ée
a té e r es ex tr aite d s p blc tio s d s CE 3 , 7 , 8 et
CIS R d l EC
Servic Clents - webstore.ie ch/ cs
Si v ou d sir ez n u d n er d s c mme tair es s r c te
p blc tio o si v ou av ez d s q e tio s c nta te -n u :
c c@ie c
Trang 3Part 2: System aspects
Capteurs ou détecteurs de courant et de tension, à uti iser pour indiquer
le passage d'un cour ant de défaut –
INT ERNAT IONAL
ELECT ROT ECHNICAL
COMMIS ION
ELECT ROT ECHNIQUE
INT ERNAT IONALE
®
Warnin ! Mak e s re that you obtain d this publc tion from a a thorize distributor
Atte tio ! Ve i ez v u a s rer q e v u a ez obte u c t e publc tio via u distribute r a ré
c lo r
insid
Trang 4FOREWORD 5
INTRODUCTION 7
1 Sco e 9
2 Normative referen es 9
3 Terms, definition , a breviation an s mb ls 9
3.1 Terms an definition related to neutral p int tre tment 10 3 2 Ab reviation an s mb ls 1
0 4 Choice of FPI/DSU req irements related to fault detection ac ordin to network o eration mode an fault typ 10 4.1 General 10 4.2 F Is/DSUs for isolated neutral s stem 10 4.2.1 Earth fault detection 10 4.2.2 Polyphase fault detection 1
4.3 F Is/DSUs for resonant e rthed (neutral) s stem – arc-s p res ion-coi -e rth (neutral) s stem 1
4.3.1 Earth fault detection 1
4.3.2 Polyphase fault detection 12 4.4 F Is/DSUs for sol dly e rthed neutral s stems (s stems with low-imp dan e e rthed neutrals) 12 4.5 F Is/DSUs for imp dan e e rthed neutral s stem (resistive imp dan e e rthed neutral s stem ) 12 4.5.1 Earth fault detection 12 4.5.2 Polyphase fault detection 1
3 4.6 F Is/DSUs for s stems with hig presen e of DER 13 4.7 Summary of FPI/DSU req irements with resp ct to fault detection ac ordin to network o eration mode an fault typ 13 5 Fault detectin prin iples ac ordin to network an fault typ 15 5.1 General 15 5.2 Earth fault detection an neutral tre tment 18 5.2.1 General 18 5.2.2 Earth fault detection in isolated neutral s stems 18 5.2.3 Earth fault detection in resonant e rthed s stems 2
5.2.4 Overc r ent detection in a sen e or negl gible presen e of DER 3
5.2.5 Overc r ent detection in presen e of a large amou t of DER (sig ificantly in re sin s ort circ it c r ent values) 3
An ex A (informative) Example of a p s ible solution for fault detection throu h FPIs/DSUs on closed lo p fe der 3
A.1 General 3
A.2 Double bip le model 3
A.3 Analy is of zero-seq en e values in case of fault on a l ne out of the closed lo p 4
A.4 Analy is in case of fault on the closed-lo p 4
A.5 Example of on- ield a pl cation 4
An ex B (informative) Example of fault detection co rdination tec niq e amon FPIs/DSUs an MV fe der protection relay 4
Trang 5B.2 Fault detection confirmation from F Is/DSUs throu h voltage
presen e/a sen e detection 4
Biblogra h 4
Fig re 1 – General arc itecture of an FPI 8
Fig re 2 – General thre -phase diagram of an e rth fault in isolated neutral s stem 16
Fig re 3 – General thre -phase diagram of an e rth fault sol dly e rthed s stem
(example 2) 17
Fig re 4 – Isolated neutral s stem – detection of e rth fault c r ent direction from
FPI/DSU upstre m from the fault location ( ault down tre m from the FPI’s/DSU’s
location) 18
Fig re 5 – Isolated neutral s stem – detection of e rth fault c r ent direction from
FPI/DSU down tre m from the fault location ( ault upstre m from the FPI’s/DSU’s
location) 19
Fig re 6 – Isolated neutral s stem – vector diagrams related to Fig re 4 an Fig re 5 2
Fig re 7 – Relation hip b twe n FPI/DSU reg lated c r ent thres old an e rth fault
c r ent in case of non-directional e rth fault c r ent detection Fault down tre m from
FPI/DSU A4-2 21
Fig re 8 – Relation hip b twe n FPI/DSU reg lated c r ent thres old an e rth fault
c r ent in case of non-directional e rth fault c r ent detection Fault down tre m from
FPI/DSU A4-1 an upstre m from FPI/DSU A4-2 2
Fig re 9 – Relation hip b twe n FPI/DSU reg lated c r ent thres old an e rth fault
c r ent in case of non-directional e rth fault c r ent detection Fault on MV bu b r
(upstre m from an F I/DSU) 2
Fig re 10 – Pure resonant e rthed s stem – detection of e rth fault c r ent direction
from FPI/DSU upstre m from the fault location ( ault down tre m from the FPI’s/DSU’s
location) 2
Fig re 1 – Pure resonant e rthed s stem – detection of e rth fault c r ent direction
from FPI/DSU down tre m from the fault location ( ault upstre m from the FPI’s/DSU’s
location) 2
Fig re 12 – Pure resonant e rthed s stem – vector diagrams related to Fig re 10 an
Fig re 1 2
Fig re 13 – Resonant e rthed s stem with in u tan e an p rmanent p ralel resistor
– detection of phase to e rth fault c r ent direction from FPI/DSU upstre m from the
fault location ( ault down tre m from the FPI’s/DSU’s location) 2
Fig re 14 – Resonant e rthed s stem with in u tan e with p ral el resistor s stem –
detection of phase to e rth fault c r ent direction from FPI/DSU down tre m from the
fault location ( ault upstre m from the FPI’s/DSU’s location) 2
Fig re 15 – Resonant e rthed s stem with in u tan e with p ral el resistor s stem –
vector diagrams related to Fig re 13 an Fig re 14 3
Fig re 16 – Earthin resistor s stem – detection of phase to e rth fault c r ent
direction from FPI/DSU upstre m from the fault location ( ault down tre m from the
FPI’s/DSU’s location) 3
Fig re 17 – Earthin resistor s stem – detection of phase to e rth fault c r ent
direction from FPI/DSU down tre m from the fault location ( ault upstre m from the
Trang 6Fig re 2 – Overc r ents in a radial network with negl gible DER presen e – cor ect
c r ent detection by non-directional FPI/DSU (go d sen itivity con ernin overc r ent
detection) 3
Fig re 21 – Overc r ents in a radial network with a large amou t of DER – u rel a le fault detection by non-directional FPIs/DSUs (in or ect detection or extremely low sen itivity) 3
Fig re A.1 – Double bip le 3
Fig re A.2 – Cas ade of double bip les 41
Fig re A.3 – Closed lo p double bip les 4
Fig re A.4 – Eq ivalent model in case of fault 4
Fig re B.1 – Cor ectly co rdinated fault selection amon FPIs/DSUs an protection relay 4
Fig re B.2 – In or ectly co rdinated selection amon FPIs/DSUs an protection relay Case 1 4
Fig re B.3 – In or ectly co rdinated fault selection amon FPIs/DSUs an protection relay Case 2 4
Ta le 1 – Summary of FPI/DSU req irements refer ed to fault detection ac ordin to
network o eration mode an fault typ 14
Trang 7INTERNATIONAL ELECTROTECHNICAL COMMISSION
1) Th Intern tio al Ele trote h ic l Commis io (IEC) is a worldwid org niz tio for sta d rdiz tio c mprisin
al n tio al ele trote h ic l c mmite s (IEC Natio al Commite s) Th o je t of IEC is to promote
intern tio al c -o eratio o al q e tio s c n ernin sta d rdiz tio in th ele tric l a d ele tro ic field To
this e d a d in a ditio to oth r a tivitie , IEC p bls e Intern tio al Sta d rd , Te h ic l Sp cific tio s,
Te h ic l Re orts, Pu lcly Av ia le Sp cific tio s (PAS) a d Guid s (h re fer refer e to a “IEC
Pu lc tio (s)”) Th ir pre aratio is e tru te to te h ic l c mmite s; a y IEC Natio al Commite intere te
in th s bje t d alt with ma p rticip te in this pre aratory work Intern tio al g v rnme tal a d n n
-g v rnme tal org niz tio s laisin with th IEC als p rticip te in this pre aratio IEC c la orate clo ely
with th Intern tio al Org niz tio for Sta d rdiz tio (ISO) in a c rd n e with c n itio s d termin d b
a re me t b twe n th two org niz tio s
2) Th formal d cisio s or a re me ts of IEC o te h ic l maters e pre s, a n arly a p s ible, a intern tio al
c n e s s of o inio o th rele a t s bje ts sin e e c te h ic l c mmite h s re re e tatio from al
intere te IEC Natio al Commite s
3) IEC Pu lc tio s h v th form of re omme d tio s for intern tio al u e a d are a c pte b IEC Natio al
Commite s in th t s n e Whie al re s n ble eforts are ma e to e s re th t th te h ic l c nte t of IEC
Pu lc tio s is a c rate, IEC c n ot b h ld re p n ible for th wa in whic th y are u e or for a y
misinterpretatio b a y e d u er
4) In ord r to promote intern tio al u iformity, IEC Natio al Commite s u d rta e to a ply IEC Pu lc tio s
tra s are tly to th ma imum e te t p s ible in th ir n tio al a d re io al p blc tio s An div rg n e
b twe n a y IEC Pu lc tio a d th c re p n in n tio al or re io al p blc tio s al b cle rly in ic te in
th later
5) IEC its lf d e n t pro id a y ate tatio of c nformity In e e d nt c rtific tio b die pro id c nformity
a s s me t s rvic s a d, in s me are s, a c s to IEC mark of c nformity IEC is n t re p n ible for a y
s rvic s c rie o t b in e e d nt c rtific tio b die
6) Al u ers s o ld e s re th t th y h v th late t e itio of this p blc tio
7) No la i ty s al ata h to IEC or its dire tors, emplo e s, s rv nts or a e ts in lu in in ivid al e p rts a d
memb rs of its te h ic l c mmite s a d IEC Natio al Commite s for a y p rs n l injury, pro erty d ma e or
oth r d ma e of a y n ture wh ts e er, wh th r dire t or in ire t, or for c sts (in lu in le al fe s) a d
e p n e arisin o t of th p blc tio , u e of, or rela c u o , this IEC Pu lc tio or a y oth r IEC
Pu lc tio s
8) Ate tio is drawn to th Normativ refere c s cite in this p blc tio Us of th refere c d p blc tio s is
in is e s ble for th c r e t a plc tio of this p blc tio
9) Ate tio is drawn to th p s ibi ty th t s me of th eleme ts of this IEC Pu lc tio ma b th s bje t of
p te t rig ts IEC s al n t b h ld re p n ible for id ntifyin a y or al s c p te t rig ts
International Stan ard IEC 6 6 9-2 has b en pre ared by IEC tec nical commit e 3 :
In trument tran formers
The text of this stan ard is b sed on the fol owin doc ments:
Ful information on the votin for the a proval of this stan ard can b foun in the re ort on
votin in icated in the a ove ta le
Trang 8A l st of al the p rts in the IEC 6 6 9 series, u der the general title Curre t and v lag
se sors orde te cto rs, to be used forfault pa s ge indic ato purp o se s, can b fou d on the
IEC we site
The commit e has decided that the contents of this publ cation wi remain u c an ed u ti
the sta i ty date in icated on the IEC we site u der "ht p:/we store.iec.c " in the data
related to the sp cific publ cation At this date, the publ cation wi b
th t it c ntains c lours whic are c nsidere to be us ful for the c r e t
und rsta ding of its c nte ts Us rs s ould therefore print this doc me t using a
c lo r printer
Trang 9The IEC 6 6 9 series is a prod ct fami y stan ard for c r ent and voltage sen ors or
detectors, to b u ed for fault p s age in ication purp ses by pro er devices or fu ction ,
in icated as fault p s age in icator (FPI) or distribution s bstation u it (DSU), de en in on
their p rforman es
Dif erent names are u ed to in icate FPIs de en in on the region of the world an on their
fu ctional ties con ernin ca a i ty to detect dif erent kin s of faults, for in tan e:
• fault detector;
• smart sen or;
• faulted circ it in icator (FCI);
• s ort circ it in icator (SCI);
• e rth fault in icator (EFI);
• test p int mou ted FCI
• combination of the a ove
Simpler version , only u in local information/sig als an /or local commu ication, are cal ed
FPI whi e very evolved version are cal ed DSU The lat er are expl citly desig ed for smart
grid an b sed on IEC 6 8 0-5 an IEC 618 0 commu ication protocols.Comp red to
in trument tran formers, digital commu ication tec nolog is s bject to on-goin c an es
whic are exp cted to contin e in the future
Profou d exp rien e with de p integration b twe n electronic an in trument tran formers
has yet to be gathered on a bro der b sis, as this typ of eq ipment is not yet widespre d in
the in u try
DSUs, b sides FPI b sic fu ction , may also o tional y integrate ad itional au i ary fu ction
• voltage presen e/a sen e detection for medium voltage (MV) network automation, with
an without distributed energ resources presen e (not for fault confirmation, whic can
b a b sic FPI fu ction de en in on the ado ted fault detection method, neither for
safety-related asp cts, whic are covered by IEC 612 3-5);
a pl cation , s c as MV network automation, monitorin of p wer flows, etc
• smart grid management (s c as voltage control an u wanted islan o eration) by
me n of a pro er interface with local distributed generators (DER);
• local output of colected information by me n of s ita le interfaces;
• remote tran mis ion of col ected information;
• others
A general FPI s heme is outlned in Fig re 1
Trang 10A Cure t (a d, if n c s ary, v lta e) s n ors 1 or 3 p a e ma b mo itore
B Tra smis io of sig als b twe n s n ors a d ele tro ic
C: L c l in ic tio s (lamp , LEDs,fla s, etc.)
D An lo u , digital a d/or c mmu ic tio in uts/o tp ts for remote c mmu ic tio /c mma d (h rd wire a d/or
wirele s)
E Co n ctio s to field a p ratu
F Sig al c n itio in , pro e sin a d in ic tin u it (CPIU)
G Power s p ly
Cur e t s n ors) ma d te t fa lt c re t p s a e with ut a y n e of g lv nic c n e tio to th p a e(s) (for
in ta c in c s of c ble ty e c r e t s n ors or of ma n tic field s n or)
Not al th a o e lste p rts or fu ctio s are n c s ariy in lu e in th F I d p n in o its c mple ity a d o
its te h olo y Howe er, at le st 1 o e of C or D fu ctio s s al b pre e t
Figure 1 – Ge eral arc ite ture of a F I
0.2 Position of this sta dard in relation to the IEC 618 0 s rie
The IEC 618 0 series is inten ed to b u ed for commu ication an s stems to s p ort
p wer uti ty automation
The IEC 6 6 9 series wi also introd ce a dedicated namesp ce to s p ort integration of
FPIs/DSUs into p wer uti ty automation
In ad ition, it defines pro er data models an diferent profi es of commu ication interfaces to
s p ort the dif erent u e cases of these FPIs/DSUs
Some of these u e cases rely on the con e t of exten ed s bstation, whic is inten ed as the
commu ication amon intel gent electronic devices (IED) throu h IEC 618 0 located b th
alon MV fe ders an in the main s bstation, for the most so histicated FPI version (an
therefore DSUs) ( or smart grid a plcation , for in tan e) Su h a profi e may not b l mited
to FPI/DSU devices, but may embrace fe tures ne ded to s p ort exten ion of these
Trang 11CURRENT AND VOLTAGE SENSORS OR DETECTORS,
Part 2: System aspects
This p rt of IEC 6 6 9 des rib s electric phenomena an electric s stem b haviour d rin
faults, ac ordin to the most widely dif u ed distribution s stem arc itecture an to fault
typ logies, to define the fu ctional req irements for fault p s age in icators (FPI) an
distribution s bstation u its (DSU) (in lu in their c r ent an /or voltage sen ors), whic are,
resp ctively, a device or a device/combination of devices an /or of fun tion a le to detect
faults an provide in ication a out their local zation
By local zation of the fault is me nt the fault p sition with resp ct to the FPI/DSU in tal ation
p int on the network (upstre m or down tre m from the FPI/DSU’s location) or the direction of
the fault c r ent flowin throu h the FPI itself The fault local zation may b o tained
• directly from the FPI/DSU, or
• from a central s stem u in information from more FPIs or DSUs,
con iderin the fe tures an the o eratin con ition of the electric s stem where the
FPIs/DSUs are in tal ed
This p rt of IEC 6 6 9 is therefore aimed at helpin u ers in the a pro riate c oice of
FPIs/DSUs (or of a s stem b sed on FPI/DSU information) pro erly o eratin in their
network , con iderin ado ted solution an o eration rules (defined by tradition an /or
de en in on p s ible con traints con ernin contin ity an q al ty of voltage s p ly defined
by a national reg lator), an also takin into ac ou t complexity of the a p ratu an
con eq ent cost
This p rt of IEC 6 6 9 is mainly foc sed on s stem b haviour d rin faults, whic is the
“core” of FPI/DSU fault detection ca a i ty clas es des rib d in IEC 6 6 9-1, where al
req irements are sp cified in detai
The fol owin doc ments, in whole or in p rt, are normatively referen ed in this doc ment an
are in isp n a le for its a pl cation For dated referen es, only the edition cited a ples For
u dated referen es, the latest edition of the referen ed doc ment (in lu in an
amen ments) a pl es
IEC 6 6 9-1, Cu rre t and v lage senso rs o r de te cto rs, to be used for fau lt p as ag
indic ato n p urpo se s – Part 1: Ge ne ral p rinciple s and re qu ire me ts
3 Terms, definitions, abbreviations and symbols
For the purp ses of this doc ment, the terms an definition given in IEC 6 6 9-1 an the
Trang 123.1 Terms a d definitio s relate to ne tral point tre tme t
3.1.1
arc-s p re sion c i
sin le-phase neutral e rthin re ctor inten ed for comp n atin the ca acitive l ne- o-e rth
c r ent d e to a sin le-phase e rth fault
Note 1 to e try: In te d of a p re re ctor, with hig q alty fa tor Q, a re istiv -re ctiv imp d n e ma b u e
to re d r e sier th e rth fa lt d te tio a d/or cle ra c
Note 2 to e try: An arc-s p re sio c i is als k own a a Peters n c i in c rtain are s
[SOURCE: IEC 6 0 0-4 1:19 0, 4 1-01-0 , modified – Note 1 an Note 2 to entry have b en
ad ed
3.2 Abbre iations a d s mbols
For the purp ses of this doc ment, the a breviation an s mb ls given in IEC 6 6 9-1
a ply
4 Choice of FPI/DSU requirements related to fa lt detection according to
network operation mode a d fault type
Clau e 4 is mainly foc sed on radial y o erated distribution network , b cau e this is,
general y, the most widely ado ted mode of o eration
Fault (or fault c r ent p s age) detection on s c network stron ly rel es on MV neutral p int
mode of o eration
In case of closed lo p distribution network , diferent con ideration are neces ary
Directional fault detection, b th con ernin e rth faults an overc r ents, b sed on vector
relation hips amon voltages an c r ents, is influen ed by the imp dan e of the fe der an
have to b evaluated case by case Commu ication amon F Is may b req ired
A simpler solution may con ist in o enin the closed lo p returnin to radial o eration an /or
to ado t commu ication amon FPIs
An example of a p s ible solution is s own in An ex A
4.2 FPIs/DSUs for is late n utral s stem
4.2.1 Earth fa lt dete tion
The e rth fault c r ent is influen ed b th by the network config ration an typ log an by
the fault resistan e
The ca acitive e rth fault c r ent contribution of medium voltage fe ders' he lth section is
general y an a precia le p rcentage of total e rth fault c r ent
NOT Th c ntrib tio to e rth fa lt c r e t of a u d rgro n me ium v lta e c ble is a o t 5 time th t of a
o erh a fe d r of th s me le gth
Hen e, in case of a fault upstre m from the location of a FPI/DSU not eq ip ed with
directional detection of fault c r ent p s age, to avoid in or ect in ication regardin the fault
location, the c r ent thres old set on F I/DSU s ould b hig er than the maximum e rth fault
Trang 13L w sen itivity with regard to fault resistan e could, therefore, b o tained in case of
non-directional FPIs/DSUs
One method to dis riminate the fault c r ent with relatively hig sen itivity with regard to
fault resistan e could b the ado tion of F Is/DSUs b sed on directional e rth fault detection
If the contribution to ca acitive e rth fault c r ent from the network down tre m from the
FPI’s/DSU’s location is negl gible, non-directional e rth fault detection may b con idered
without any sig ificant decre se of FPI/DSU p rforman e
Pos ible presen e of DER has no ef ect on the direction of fault c r ent
If no DER (or not a precia le amou t of DER) is present, in case of p lyphase faults, the fault
c r ent is comin from the HV/MV tran former Directional FPIs/DSUs s ould, general y, b
req ired if DER contribution to p lyphase fault c r ent is a precia ly present or in case of
closed-lo p config ration
4.3 FPIs/DSUs for re o a t e rthe (ne tral) s stem – arc-s ppre sion-c i -e rth
(ne tral) s stem
4.3.1 Earth fa lt dete tion
The fault c r ent is influen ed by the network config ration, the coi desig (pure in u tive or
in u tive-resistan e or in u tive with s ort term resistan e, etc.), the con ection to MV
neutral p int, the tu in of the resonant coi , the network los es at zero seq en e an the
fault resistan e
Two main solution are p s ible: a “pure” arc-s p res ion coi, a fixed or tu a le in u tor
with neglgible resistive comp nent d e only to internal los es or an in u tan e with an
intentional resistor to in re se the amou t of resistive c r ent d e to the coi
4.3.1.2 “Pure” arc-s ppre sio c i
In case of “pure” arc-s p res ion coi , tu ed ne rly to 10 % of network ca acitve c r ent an
stan ard los es value in the network comp nents, the e rth fault c r ent is extremely low,
mainly resistive, as the ca acitive e rth fault c r ent contribution from the MV network is
comp n ated by the in u tive contribution from the arc s p res ion coi The mag itu e of
the e rth fault c r ent would have ne r zero value when an e rth fault oc urs at an location
on the same HV/MV s bstation bu b r network
More ver, e rth fault c r ent throu h al FPIs/DSUs, whatever their location on the network
(upstre m or down tre m from the fault p sition), is mainly re ctive (vector relation hip
b twe n resid al c r ent in an FPI/DSU an resid al voltage is the same, cor esp n in to
9 ° degre le din an le of resid al c r ent with resp ct to resid al voltage), with neglgible
active comp nent ( his comp nent is the only one a le to modify vector relation hips b twe n
Trang 14FPIs/DSUs for pure resonant e rthed (neutral) s stems s ould, therefore, b directional for
phase to e rth fault detection
NOT With ut th a o tio of a re istiv -in u tiv arc-s p re sio c i (4.3.1.3), it ma b p s ible to d te t a
e rth fa lt with n n-dire tio al F I/DSU a d with temp rary mo ific tio of th n twork c nfig ratio , b , for
in ta c , cre tin a mistu in of th arc-s p re sio c i u in a c p citor in p ralel to th c i its lf a d
switc in it o a d of with difere t mo altie
4.3.1.3 Re istiv -in uctiv arc-s ppre sion c i
If a hig -value resistor is in tal ed in p ral el to the arc s p res ion coi , temp rari y or
p rmanently con ected to e rth:
• e rth fault c r ent throu h FPI/DSU in tal ed on he lth fe ders or down tre m from the
fault is mainly re ctive ( he vector relation hip b twe n resid al c r ent an resid al
voltage ne rly cor esp n s to 9 ° le din an le of resid al c r ent with resp ct to resid al
voltage), with negl gible active comp nent;
• e rth fault c r ent throu h FPI/DSU in tal ed on faulty fe ders upstre m from the fault is
resistive-re ctive ( he vector relation hip b twe n resid al c r ent an resid al voltage is
u ual y in the ran e from 9 ° to 18 ° le din an le of resid al c r ent with resp ct to
resid al voltage), with non-negl gible active comp nent
The mag itu e of the e rth fault c r ent would have a value ne rly cor esp n in to the
active c r ent from the e rthin resistor when an e rth fault oc urs at an location on the
same s bstation bu b r network
FPIs/DSUs for resistive-in u tive resonant e rthed (neutral) s stems s ould, therefore, have
either directional or non-directional ca a i ty for phase to e rth fault detection
Pos ible presen e of DER has no ef ect on the direction of fault c r ent
NOT Dete tio of intermite t e rth fa lts b F I/DSU mig t b re uire
4.3.2 Polypha e fa lt d te tion
Se 4.2.2
4.4 FPIs/DSUs for s l dly e rth d ne tral s stems (s stems with low-impe a c
e rth d ne trals)
Overc r ent detection can b u ed to detect b th e rth an p lyphase faults
If no DER (or no a precia le amou t of DER) is present, the fault c r ent comes from the
HV/MV tran former Phase directional FPIs/DSUs may b req ired only if DER is a precia ly
present
More ver, e rth directional FPIs/DSUs may b req ired even if, ac ordin to the DER neutral
p int an the DER tran former group, a phase to e rth c r ent contribution may have come
Trang 15FPIs/DSUs could b directional an /or non-directional, de en in on the values of the
intentional e rthin resistor ( he lower it is, the hig er is the neutral c r ent, th s directional
detection could b avoided in some circ mstan es), on the network config ration, on the
network ca acitive c r ent an on the desired sen itivity con ernin fault resistan e value
detection
In the case of an e rthin resistor injectin low or moderate neutral c r ents in the event of an
e rth fault, F Is/DSUs s ould prefera ly b directional for e rth fault detection This is to
o tain a pro riate sen itivity with regard to faults with hig resistan e value The res ltin
e rth fault c r ent o tained with this solution is not mu h hig er than the pure ca acitive e rth
fault c r ent comp nent
In the case of an e rthin resistor injectin moderate or hig neutral c r ent in the event of an
e rth fault, non-directional FPIs/DSUs may b u ed With this solution, the e rth fault c r ent
is hig er than the network ca acitive c r ent
4.5.2 Polyph s fa lt dete tion
Se 4.2.2
4.6 FPIs/DSUs for s stems with high pre e c of DER
The presen e of DER on a network is con idered to b hig when the c r ent contribution
from DER down tre m from the FPI’s/DSU’s location for a fault located upstre m from the
FPI/DSU itself (even on another MV fe der con ected to the same HV/MV or MV/MV
tran former) is comp ra le to the FPI/DSU overc r ent thres old
In this case, FPIs/DSUs s al have directional detection of phase faults if the DER
sig ificantly contributes to s ort circ it c r ents (se 5.2.4 an 5.2.5) Con ernin phase to
e rth fault detection, se 4.2.1, 4.3.1, 4.4, 4.5.1 In an case, if directional detection is
present for p lyphase overc r ents, the same s ould b true for phase to e rth c r ents
NOT This v rsio of F I/DSU c n als b a le to:
• ma a e ma y smart grid n twork c nfig ratio s, a s min th t smart grid are distrib tio n twork with a
hig p n tratio of DERs;
• ofer a ditio al fe ture (for in ta c , a v n e n twork a tomatio , in lu in s lf h aln a d a tomatic
s p ly re tore) e e in th pre e c of DER;
• s p ort e s n twork re o fig ratio , DER a tiv p wer a d re ctiv p wer c ntrol for v lta e re ulatio , etc
Ev n a ditio al distrib tio n twork o eratio stru ture , difere t from th main difu e ra ial o e , ma b
s c e sfuly h n le b th s F Is/DSUs (for in ta c clo e lo p o eratio of MV fe d rs)
4.7 Summary of FPI/DSU re uireme ts with re pe t to fa lt dete tion a c rding to
network operatio mo e a d fa lt type
Ta le 1 gives a s mmary of FPI/DSU req irements des rib d in 4.1 to 4.6
Ta le 1 refers only to whether it is p s ible or not to ado t the directional fault detection
prin iple on FPIs, i.e the detection of the fault c r ent throu h the FPI itself
The direction may b o tained with dif erent solution : by me s rin the an le b twe n
resid al/phase voltage an resid al/phase c r ent, by tran ient analy is of c r ent (an /or
voltage) of the first mi isecon af er fault oc ur en e, etc
The complete FPI (an DSU) clas ification by clas es is in lu ed in IEC 6 6 9-1
Trang 16Table 1 – Summary of FPI/DSU re uireme ts refer e to fa lt dete tion
a c rdin to network operation mode a d fa lt type
Trang 17Fault type MV network neutal p int o eratio mo e
Fault detection has to cor ectly o erate in e en ent of network neutral p int tre tment an
when there is the p s iblty of a hig degree of p netration of distributed generation (DER)
con ected to distribution fe ders If not, this has to b cle rly stated by the man facturer in
the “a pl cation field”
In order to cor ectly detect faults, FPIs/DSUs s ould b integrated in the network protection
s stem for fault location or, at le st, co rdinated with the protection s stem itself
They s ould have the same fault detection ca a i ty an sen itivity as the network protection
s stem This is to avoid p s ible pro lems in fault location d e to lower FPI/DSU sen itivity
with resp ct to the MV fe der protection relay, ir esp ctive of whether the location is
p rformed by p rson el in field or by an automation s stem These pro lems may b present
if it is neces ary to detect an cle r a hig resistan e value e rth fault
On the other han , in case of hig er FPI/DSU sen itivity with resp ct to MV fe der
protection , n isan e e rth fault detection may ha p n, with negative con eq en es for
p rson el in field or for automation s stems; the lat er may b avoided, for in tan e, throu h
a fault presen e confirmation (e.g voltage or c r ent a sen e determined by MV fe der
protection relay trip in as ociated with simultane u fault detection from the FPI/DSU)
In An ex B, two diferent examples of solution for fault detection an fault location detection
an cle rin are des rib d They have the same efectivenes with regard to faults, but
dif erent p rforman e with regard to n mb r an typ logy of s p ly inter uption to en u ers
Fig res 2 an 3 s ow the fault c r ent p th an the vector diagrams as ociated with diferent
kin s of faults on dif erently o erated network , as it is fu damental for the FPI/DSU
man facturer an u er to take al this into ac ou t for an a pro riate FPI/DSU desig an
c oice
NOT Th v ctor dia rams s own in Fig re 2, Fig re 3 a d in 5.2 are inte d d o ly for th a o e d s rib d
p rp s So th v ctor s ale c n b in ore t b c u e of e itorial c n traints
Co c rnin e rth fa lts, MV s stems ma b gro p d in two main c te orie : s ldly e rth d n utral s stems a d
al th oth rs (is late , c mp n ate , etc) Th s two c te orie h v c mpletely difere t b h vio rs (s e
Trang 1823
23
3
12
C
ECje
23
23
3
6
C
C
C
C
9
333
3
23
Cj
ECj
C
C
C
9
333
3
23
Cj
ECj
rsd)
Trang 19in c s of a e rth fa lt in tale o a fa lty MV fe d r For
c mplete d tais a d for oth r MV n utral p int o eratio mo e (e c pt for s ldly e rth d s stems), s e 5.2
B: Toroid l CT for d te tio of re id al c re t I
R
in c s of a e rth fa lt in tale o a h alth MV fe d r Th
b h vio r is simiar for al s stems, e c pt for s ldly e rth d s stems
ECje
23
23
CSA
R A
IIII
Ca a itiv c re t c ntrib tio from h alth a d fa lty MV fe d rs is 1/3 with re p ct to th a o e d s rib d
s stems Th refore, I
C
> I
A, I
B, etc whic ma b c n id re n glgible
Figure 3 – Ge eral thre -pha e dia ram of
Trang 205.2 Earth fa lt dete tion a d ne tral tre tme t
Earth faults c r ents are de en ent up n neutral tre tment an fault resistan e
FPIs/DSUs s al b desig ed an tested for e c neutral p int tre tment of MV network
where they are req ired to b in tal ed
5.2.2 Earth fa lt dete tion in is late ne tral s stems
The s heme of c r ent flow direction with referen e to the orientation of resid al c r ent
sen ors is s own in Fig re 4 an Fig re 5
The vector diagrams an s mb l definition are in icated in Fig re 6
Figure 4 – Is late n utral s stem – dete tion of e rth fa lt c r e t dire tion
from FPI/DSU upstre m from the fa lt loc tion
C2+I
C3
= I
C-I
C2+I
C3+I
Trang 21Figure 5 – Is late n utral s stem – dete tion of e rth fa lt c r e t dire tion
from FPI/DSU downstre m from th fa lt loc tion
( a lt upstre m from the FPI s/DSU’s lo atio )
C2+I
C3+I
C2+I
C3
=I
C-I
C4
A3
A1
Trang 22c n e te to th s me MV b s ar (E = p a e to e rth v lta e of th ele tric s stem)
Ca e A: Earth fa lt d wn tre m from F I/DSU A1
Ca e B: Earth fa lt d wn tre m from F I/DSU A2
Ca e C: Earth fa lt u stre m from F I/DSU A3
Trang 23If the FPI/DSU is non-directional, its c r ent thres old set in s al b hig er than the
ca acitive c r ent of the down tre m p rt of the fe der (with resp ct to the FPI’s/DSU’s
location) to avoid an in or ect in ication in case of an upstream e rth fault
This may drastical y red ce its sen itivity; for in tan e, no detection is p s ible if the
down tre m ca acitive c r ent is comp ra le to or hig er than that of the upstre m one (case
of down tre m u dergrou d network)
A s ort des ription is s own in Fig re 7, Fig re 8, an Fig re 9 where, for a b t er
explanation, the seq en e re resentation of the phenomena is ado ted
Ke
lo atio of re id al c re t tra sformers (CTs) (or of c r e t s n ors for me s reme t of re id al c re t
c n e tio al orie tatio of re id al c re t tra sformers (CTs) (or of c r e t s n ors for me s reme t of
C2, I
C3, I
re id al c p citiv c re t of th Fe d r 4 s ctio u stre m from th F I/DSU A4-2 lo atio
a d d wn tre m from th F I/DSU A4-1 lo atio
re id al c r e t me s re b F I/DSU A4-2 re id al c r e t tra sformer (CT) or c re t s n or
in c s of a e rth fa lt d wn tre m from th F I/DSU A4-2 (e u l to I
A4-2A4-
Ir2= IC -IC4Ir
1
= I
C1+I
C2+I
C3
= I
C-I
C4
A 1,A2,A 3Ir
Trang 24In case of an e rth fault down tre m from the FPI/DSU A4-2 (Fig re 7), its maximum c r ent
thres old to detect the fault, without directional e rth fault c r ent detection, is I
C
− I
C 4_(with
fault resistan e eq al to zero an not con iderin CT/sen or ac uracies) The lower the
reg lated c r ent thres old, the hig er the FPI/DSU sen itivity
Ke
lo atio of re id al c re t tra sformers (CTs) (or of c r e t s n ors for me s reme t of re id al c re t
c n e tio al orie tatio of re id al c re t tra sformers (CTs) (or of c r e t s n ors for me s reme t of
C2,I
C3,I
re id al c p citiv c re t of th Fe d r 4 s ctio u stre m from th F I/DSU A4-2 lo atio
a d d wn tre m from th F I/DSU A4-1 lo atio
I
C4 2
re id al c p citiv c r e t of th Fe d r 4 s ctio d wn tre m from th F I/DSU A4-2 lo atio
A1, A2, A3 F Is/DSUs at th d p rture of fe d r 1, fe d r 2 a d fe d r 3, re p ctiv ly, a d afe te b
I
C1, I
2+I
3
= I-I
4A1, A 2, A3
Trang 25In case of an e rth fault down tre m from the FPI/DSU A4-1 but upstre m from FPI/DSU A4-2
(Fig re 8), its maximum c r ent thres old, without directional e rth fault c r ent detection, is
I
C
− I
C 4
(with fault resistan e eq al to zero an not con iderin CT/sen or ac uracies) The
lower the reg lated c r ent thres old, the hig er the FPI/DSU sen itivity
Nevertheles , the minimum c r ent thres old of FPI/DSU A4-2 s al b hig er than I
C4 2
in
order to avoid in or ect fault c r ent p s age detection
Ke
lo atio of re id al c re t tra sformers (CTs) (or of c r e t s n ors for me s reme t of re id al c re t
c n e tio al orie tatio of re id al c re t tra sformers (CTs) (or of c re t s n ors for me s reme t of
C2, I
C3, I
re id al c p citiv c re t of th Fe d r 4 s ctio u stre m from th F I/DSU A4-2 lo atio
a d d wn tre m from th F I/DSU A4-1 lo atio
Trang 26Both in case of an e rth fault down tre m from the F I/DSU A2 or A1, the minimum c r ent
thres old of FPIs/DSUs A1, A2 an A3, without directional e rth fault c r ent detection, are
CT/sen or ac uracies)
Furthermore, in case of an e rth fault on the MV bu b r, c r ent thres old of F I/DSU A4-1
an A4-2 s al b hig er than I
C4
C 4_
, resp ctively
The hig er the reg lated c r ent thres old, the lower the p s ibi ty of an in or ect fault
detection from FPIs/DSUs on he lth fe ders or on the faulty fe der down tre m from the
fault
This me n that, in case of non-directional fault detection from FPIs/DSUs:
• the cor ect fault detection is determined b th from down tre m fe der fe tures an from
upstre m network fe tures;
• FPI/DSU reg lated c r ent thres old s al b hig er than the e rth fault c r ent
contribution from the network down tre m from its location an lower than the e rth fault
c r ent contribution from the whole network upstre m from its location This may red ce
its sen itivity;
• e c FPI/DSU s ould have a dif erent reg lated c r ent thres old, therefore res ltin in
dif erent sen itivities related to the in talation p int;
• c an es in the distribution s stem config ration of the network may c an e the fault
c r ent contribution an res lt in inac urate fault detection
Therefore, directional detection from the FPI/DSU is recommen ed: dif erent algorithms may
b u ed to determine the direction of the fault (varmetric detection prin iple, tran ient analy is
of the first mi isecon af er the fault, etc.)
5.2.3 Earth fa lt dete tion in re on nt e rthe s stems
5.2.3.1 Pure re on nt e rthe (only in ucta c )
The s heme of c r ent flow direction with referen e to the orientation of resid al c r ent
sen ors is s own in Fig re 10 and Fig re 1
Trang 27C3-I=-I
C2+I
C3+I
C2+I
C3-I=-I
C2+I
C3+I
C4
B
B
B
Trang 28in u tiv c re t from th c i (I) ∼ z ro v lu (s me p a e, n v ctor s m n c s ary).
L s e (a tiv c re t c mp n nt at z ro s q e c of n twork c mp n nts are n glgible
(E is th p a e to e rth v lta e of th ele tric s stem)
NOT Co sid rin fa lts u stre m or d wn tre m
from th s me F I lo ate o th fa lty fe d r,
als fa lt c re t v lu s a d a gle with re p ct to
re id al v lta e are th s me
IE
Trang 29C1+ I
C2+ I
C3
− I = −I
C4 (s me dire tio a I)
(s me p a e, n v ctor s m n c s ary) L s e (a tiv c re t c mp n nt at z ro
re id al c r e t me s re from F I/DSU in th lo atio o Fe d r 4 for a e rth fa lt
d wn tre m from th F I/DSU; I
r 2
= I
C1+ I
C2+ I
C3+ I
In the case of a down tre m fault an coi at 10 % of ca acitive c r ent, the c r ent throu h
the FPI/DSU is the vector s m of the ca acitive c r ent of the MV fe der down tre m from
the FPI’s/DSU’s location an of a minimal neutral active c r ent (d e to coi internal los es
an to al the other zero seq en e resistive comp nents in the network, not s own in
Fig re 10 or Fig re 1 an b in u ual y negl gible or, an way, very smal )
For coi s tu ed at values dif erent from 10 % I
C, the c r ent throu h the FPI/DSU is the
vector s m of the ca acitive/in u tive c r ent mismatc (mismatc , intentional or not,
b twe n the in u tive c r ent from the coi an the total MV network ca acitive c r ent an
of the ca acitive c r ent of the MV fe der down tream from the FPI’s/DSU’s location an of
the neutral active c r ent
In b th cases, this c r ent is comp ra le or even lower than the down tre m ca acitive
c r ent an has the same direction as the fault c r ents in the he lth fe ders (an relative
FPIs/DSUs) So, directional detection from the FPI/DSU s ould b present, even if it is
extremely dif ic lt to determine the direction of e rth- ault c r ent with pure neutral imp dan e
when the s stem is tu ed to 10 % of the network total ca acitive c r ent: dif erent algorithms
may b u ed (varmetric, provided the coi internal los es are hig enou h, tran ient analy is,
etc.)
5.2.3.2 Re ona t e rthe thro gh inducta c with paral el re istor (re cta c
e rthe )
The s heme of c r ent flow direction with referen e to the orientation of resid al c r ent
sen ors is s own in Fig re 13 an Fig re 14
Trang 30Fig re 13 – Re on nt e rthe s stem with in ucta c a d perma e t paral el re istor –
dete tio of pha e to e rth fa lt c r e t dire tion from FPI/DSU upstre m from the fa lt
loc tion ( a lt downstre m from the FPI s/DSU’s loc tion)
C2+I
C3
C4+I
C2+I
C3+I
C4
=-IA1
C2+I
C3
C4+I
C2+I
C3+I
Trang 32of c i tu e to 10 % I
C, ie
RLCF
III
× C
E) × E – I
C4), c i in u tiv c re t I a d c i + a ditio al re istiv c re t d e to
n twork lo s s at z ro s q e c , ∼ v ctor s m of (−I
C 4), s me dire tio a I, a d I , ie.:
RLCCR
IIIII
CCCCC
(E is th p a eto e rth v lta e of th ele tric s stem)
re id al c r e t me s re from F I/DSU in th lo atio o Fe d r 4 for a e rth fa lt
d wn tre m from th F I/DSU, c r e p n in to v ctor s m of c p citiv c re t
dwn stra m4CCR
III
II
CCC
CC
v ctor dia rams relate to Fig re 13 a d Fig re 14
In case of non-directional fault detection, it is very dif ic lt to determine fault c r ent direction
FPI/DSU sen itivity (minimum thres old) is related to the active comp nent of the c r ent
throu h the (eq ivalent p ral el resistor an to the cap citive c r ent of the fe der section
that is down tre m from the FPI’s/DSU’s location
If the contribution to e rth fault c r ent of the network down tre m from the FPI’s/DSU’s
location is comp ra le to or hig er than that of the network upstre m, only the active
comp nent of the c r ent d e to an (eq ivalent p ral el resistor may al ow cor ect directional
fault detection
The active comp nent of the c r ent al ows for FPI’s/DSU’s c r ent sen itivity to b in re sed
so that faults down tream from the FPI’s/DSU’s location can b detected, th s avoidin
n isan e o eration an providin s f icient sen itivity for hig -resistan e fault detection
Directional detection from the F I/DSU s ould b present Without directional fault detection
fu ction, sen itivity may b very red ced, de en in on the total value of the resistan e
elements in series in the fault circ it
Here again, c an es in the config ration of the network or network config ration in whic a
sin le MV fe der gives a mu h big er contribution (in terms of ca acitive c r ent, with resp ct
Trang 33To detect the fault c r ent direction , diferent algorithms may b u ed (wat metric detection
prin iple, tran ient analy is of first mi isecon af er the fault, etc.)
In case of a down tre m fault an coi at 10 % of ca acitive c r ent, the c r ent throu h the
FPI/DSU is the vector s m of the ca acitive c r ent of the MV fe der down tream of the
FPI’s/DSU’s location an of the neutral active c r ent
For coi tu ed to values dif erent from 10 % I
C, the c r ent throu h the FPI/DSU is the vector
s m of the ca acitive/in u tive c r ent mismatc (mismatc , intentional or not, b twe n the
in u tive c r ent from the coi an the total MV network ca acitive c r ent , of the ca acitive
c r ent of the MV fe der down tre m from the FPI’s/DSU’s location an of the neutral active
c r ent
For active c r ent, two cases can b examined:
• Permanent p ral el resistor: the neutral active c r ent is relatively low (some amp res or
ten of amp res), res ltin in low total e rth fault c r ent In this case, the c r ent in the
FPI/DSU is comp ra le to or lower than the down tre m ca acitive c r ent an has the
same direction (with referen e to re ctive comp nent as the fault c r ents in the he lthy
fe ders (an relative FPIs/DSUs) As mistu in of the coi is u ual y negl gible, an total
c r ent values very low, directional FPIs/DSUs are req ired;
• Short term p ral el resistor: when the resistor is put in service, the e rth fault c r ent
in re ses enoug to al ow for directional detection The neutral active c r ent, in this
solution, may b relatively hig (se also 5.2.3.3)
To detect the fault c r ent direction dif erent algorithms may b u ed (varmetric or wat metric
detection prin iple, tran ient analy is, etc.)
5.2.3.3 Earth fa lt dete tion in re istiv impe a c e rthe ne tral (s stem with
e rthing re istor)
The s heme of c r ent flow direction with referen e to the orientation of resid al c r ent
sen ors is s own in Fig re 16 an Fig re 17
The vector diagrams an s mb l definition are in icated in Fig re 18
Trang 34Figure 16 – Earthin re istor sy tem – dete tio of pha e to e rth fa lt
c r e t dire tio from F I/DSU upstre m from th fa lt loc tion
( a lt d wn tre m from th FPI s/DSU’s lo atio )
Figure 17 – Earthin re istor s stem – dete tio of pha e to e rth fa lt
c r e t dire tion from FPI/DSU downstre m from the fa lt loc tion
C2+I
C3+I
A3I
C2+I
C3+I = I
C2+I
C3+I
I
A2
A1I
C4I
C2+I
C3+I = I
C
C4 +I
B
B
B
Trang 36e rthin re istor re istiv c re t, ie.:
RCFIII
× C
E) × E – I
C 4) a d e rthin re istor re istiv c re t, i e.:
RCCR
IIII
(E is th p a e to e rth v lta e of th ele tric s stem)
re id al c r e t me s re from F I/DSU in th lo atio o Fe d r 4 for a e rth fa lt
d wn tre m from th F I/DSU, c r e p n in to v ctor s m of c p citiv c re t
CR
II
II
C4 downsream
), the FPI/DSU may b
non-directional, as the direction of the fault c r ent is determined from the fe tures of the
network FPI/DSU sen itivity (minimum thres old set in ) is related only to I
Due to this, the F I/DSU may b non-directional, as the direction of the fault c r ent is
determined from the fe tures of the network (u les there is a large amou t of DER)
Trang 37Con eq ently, it can b q ite diferent de en in on the fault location – ne r the HV/MV TR
or alon the fe der – an , in the later case, on the typ log of the con u tor upstre m from
the fault location (overhe d, un ergrou d ca le, etc.)
= 0 for a y F I/DSU d wn tre m from a 2Φ or 3Φ fa lt
Figure 19 – Overc r e ts in a ra ial network witho t DER – c r e t c r e t dete tio by
no -dire tion l FPI/DSU (go d s nsitivity c nc rnin ov rc r e t dete tion)
Trang 38s ort circ it c ntrib tio to a fa lt o a oth r MV fe d r from a smal-me ium rate p wer g n rator
c n e te alo g a h alth MV fe d r (lower th n prote tio rela a d F I/DSU ma imum c re t s tin s)
I
C_
s ort circ it c ntrib tio to a fa lt o a oth r MV fe d r from a smal-me ium rate p wer g n rator
c n e te alo g a h alth MV fe d r (lower th n b th prote tio rela a d F I/DSU ma imum c re t
s tin s)
Figure 2 – Overc r e ts in a ra ial network with ne l gible DER pre e c –
c r e t c r e t d te tion by no -dire tional FPI/DSU
(go d s nsitivity c nc rnin ov rc r e t dete tion)
For phase faults, direction of fault c r ent is determined from the HV/MV tran former in a
radial config ration with no DER or negl gible DER presen e Directional F Is/DSUs are not
C_1 +I
C_1 +I
Trang 395.2.5 Ov rc r e t dete tion in pre e c of a large amount of DER (signific ntly
in re sing s ort circ it c r e t v lue )
Figure21a – FPIs/D Us u st e m f om the fault loc tio
Figure 21b – FPIs/D Us d wnst e m fom the fault loc tio
Ke
lo atio of p a e c re t tra sformers (CTs) (or of s n ors for me s reme t of o erc re ts)
I
C
s ort circ it c ntrib tio to a fa lt o MV n twork from HV/MV tra sformer u stre m from th
MV fe d r prote tio a d/or th F I s/DSU’s lo atio alo g th MV fe d r
Trang 40lo atio alo g Fe d r 4) in c s of 2Φ to 3Φ fa lt d wn tre m from th F I/DSU lo atio o th MV fe d r (it ma
(c ntrib tio of DER d wn tre m from th F I/DSU lo atio alo g Fe d r 4) in c s
of 2Φ to 3Φ fa lt u stre m from th F I/DSU lo atio o th MV fe d r (it ma b lower or hig er th n F I/DSU
ma imum c re t s tin s)
Figure 21 – Ov rc r e ts in a ra ial network with a large amou t of DER –
unrel able fa lt dete tion by non-dire tional FPIs/DSUs
(inc r e t dete tion or e tremely low s nsitivity)
In this situation, DER contributes to s ort circ it c r ents at an location on the distribution
network s p led from the same s bstation bu
Cur ent contribution is not defined, as it strictly related to typ an fe tures of the generator
tec nology an grou din method, in p rtic lar, typical the retical values are:
• s n hronou , in the ran e from a out 6 p r u it (p.u.) to a out 8 p.u nominal c r ent
(s btran ient re ctan e);
• as n hronou (with no self ex itation s stem), in the ran e from a out 8 p.u to a out
10 p.u nominal c r ent, some ten of mi isecon s;
• in erters, in the ran e from a out 1,1 p.u to a out 1,3 p.u nominal c r ent, etc
Minor ef ects may derive, in some cases, from the nature of the primary energ resource:
• fos is;
• win ;
• solar, etc
an /or from the u age of the generator (related to a prod ction c cle, combined he t an
p wer, pure generation, etc.)
From Fig re 21, it is evident that it may not b p s ible to have a cor ect detection of
overc r ents with the indication of their direction, b th from MV fe der protection relay an
from FPIs/DSUs, d e to the imp ct of a large amou t of DER
For overc r ent fault detection in distribution network with a hig presen e of DER,
directional F Is/DSUs are neces ari y req ired b cau e the c r ent contribution to the fault
from DER can b comp ra le to the c r ent contribution to the fault comin from the HV/MV
tran former
In case the fault is close to the FPI/DSU location, the voltage memory prin iple may b
ado ted, con iderin the voltage of at le st one he lth phase (phase to e rth or phase to
phase) b fore the fault ha p n