This Te hnical R ep rt pro ides guidel nes for the identif ication of chemical efe t on X-ra or ele tron-ex cit ed A ug er-ele tron spe tra an for using these efe t in chemical charact e
Trang 1Surfac e chemical anal ysis — Aug er
An lyse chimique des surfce s — S ec trosco ie de s électro s Au e
— Déduction de l’infrmation chimique
Refer ence n mb r
ISO/TR 1 3 4:2 16(E)
S con edition
2 16-0 -0
Trang 2COPYRIGHT PROTECTED DOCUMENT
© ISO 2016, P blshed in Sw itz rlan
A ll rig hts r eserved Unles otherw ise spe ified, nopar of this p blc tion ma y be r epr od c d or utilz d otherw ise in an form
or b an me ns, ele tr onic or me hanic l, inclu in p oto opying , or postin on the internet or an intranet , w ithout prior
written permis ion Permis ion c n be req esed from either ISO at the ad r es below or ISO’s member bod y in the c u try of
Trang 3F reword i v
Introduction v
1 Sc ope 1
2 Nor mati ve r eferenc es 1
3 Terms and definitio s 1
4 A bbreviated ter ms 1
5 T ypes of chemical and sold-state efects in Aug er -electr on spectra 1
6 Chemical efects ar ising fr om c ore- evel Aug er -electr on transitions 3
6.1 General
3 6.2 Chemical shifts of Aug er-ele tr on ener g ies 3
6.3 Chemical shifts of Aug er p ramete s 4
6.4 Chemical-s ate plot 6
6.5 Datab ses of chemical shifs of Aug er-ele tr on ener g ies an Aug er p r amete s 7
6.6 Chemical efe t on Aug er-ele tr on satel testructur es 7
6.7 Chemical efe t on the relative intensities an lne sha es of CC Aug er-ele tron lnes 8
6.8 Chemical efe t on the inelastic r eg ion of C CAug er-ele tr on spe tra 9
7 Chemical efects o Aug er-electron transitions invol ving valenc e electr ons 10
7.1 General 1
7.2 Chemical-s ate-dependent lne sha es of C V an CVV Aug er-ele tron spe tra 1
7.3 Information on local ele tr onic s ructur e from analysis of C V an CVV Aug er-ele tr on lne sha es 1
7.4 No el te h iq es for o taining information on chemical b n ing fr om Aug er pr oc s es 1
Biblog raphy 21
Trang 4ISO (he Int ernational Org nization for Stan ardization) is a worldwidefede ation of national s an ards
b dies (ISO membe b dies) The work of pr p ring Int ernational Stan ards is normaly car ied out
through ISO t ech ical committ ees Each membe b dy int er st ed in a subje t for w hich a t ech ical
committ ee has be n es a lshed has the right t o be r pr sent ed on that committ ee Int ernational
org nizations, g ove nmental an non-g ove nmental, in laison with ISO, also take part in the work
ISO cola orat es closely with the Int ernational Ele trot ech ical C mmis ion (IEC) on al matt ers of
ele trot ech ical s an ardization
The proc d r s used t o develo this document an those int en ed for it furthe maint enanc ar
desc ibed in the ISO/IEC Dir ctives, Part 1 In p rticular the dife ent a pro al c it eria ne ded for the
dife ent ty es of ISO document should be not ed This document was draft ed in ac ordanc with the
edit orial rules of the ISO/IEC Dir ctives, Part 2 ( e www.iso.org dir ctives)
A tt ention is drawn t o the p s ibi ity that some of the element of this document ma be the subje t of
p t ent right ISO shal not be held r sponsible for identifying any or al such p t ent right Detais of
any p t ent right identified d ring the develo ment of the document wi be in the Introd ction an / r
on the ISO ls of p t ent de larations r c ived ( e www.iso.org p t ent )
Any trade name used in this document is information given for the convenienc of use s an does not
cons itut e an en orsement
F or an ex lanation on the meaning of ISO spe ific t erms an ex r s ions r lat ed t o conformity
as es ment, as wel as information a out ISO’ s adhe enc t o the WTO principles in the Te h ical
Bar ie s t o Trade (TBT), se thefolowing URL:F or word — Sup lementary information
The committ ee r sp nsible for this document is ISO/TC 2 1, S rf c e chemic al a alys i s , Subcommitt ee
SC 7, Elec tro s pec tros c opies
This se on edition canc ls and r plac s the firs edition (ISO/TR 1 3 4:2 0 ), w hich has be n
t ech icaly r vised
Trang 5This Te hnical R ep rt pro ides guidel nes for the identif ication of chemical efe t on X-ra or ele
tron-ex cit ed A ug er-ele tron spe tra an for using these efe t in chemical charact erization
A ug er-ele tron spe tra contain information on surface /int erfac elemental comp sition as wel as
on the environment local t o the at om with the initial cor hole
[1][2][3][4][5]
Chang es in A ug er-ele tron
spe tra d e t o alt erations of the at omic environment ar cal ed chemical (or sold-s at e) efe t
R eco nition of chemical efe t is ve y important in pro e q antitative a plcations of A ug er-ele tron
spe trosco y an can be ve y helpful in identif ication of surfac chemical spe ies an of the chemical
s at e of cons ituent at oms in surfac or int erfac la e s
Trang 7Surfac e chemical anal ysis — Aug er electron spectrosc opy
This Te hnical R ep rt pro ides guidelnes for identifying chemical efe t in X-ra or ele tron-ex cit ed
A ug er-ele tron spe tra an for using these efe t in chemical charact erization
2 Normati ve r eferences
The folowing document , in w hole or in p rt, ar normatively r fe enc d in this document an ar
in ispensa le for it a pl cation F or dat ed r fe enc s, only the edition cit ed a pl es F or u dat ed
r fe enc s, the lat es edition of the r fe enc d document ( inclu ing any amen ment )a pl es
ISO 1 1 5 (al p rt ), S rfc e chemic al a alys i s — Voc ab lar y
3 Terms and definitions
F or the purposes of this document, the t erms an def initions given in ISO 1 1 5 (al part ) a ply
4 Abbr eviated ter ms
C C cor -cor -cor (A ug er-ele tron transition)
C V cor -cor -v lenc (A ug er-ele tron transition)
CVV cor -v lenc -v lenc (A ug er-ele tron transition)
DEAR-AP CS Dichroic Efe t in Angle R esolved A ug er-Phot oele tron C incidenc Spe trosco y
h-BN hex g onal b ron nitride
IAE Int erat omic A ug er Emis ion
ICD Int erat omic C ulomb De a
PAES Positron-An ihiation-in uc d A ug er Ele tron Spe trosco y
REELS R efle tion Ele tron E e g -L s Spe trosco y
5 T ypes ofchemical and sol d-state efects in Aug er-electron spectra
Many ty es of chemical or sol d-s at e efe t can be o se ved in A ug er-ele tron spe tra
[1][2][3][4][5]
Chang es in the at omic environment of an at om ioniz d in it in e shel can r sult in a shif of the kinetic
ene g of the emitt ed A ug er ele tron In the case of X-ra -ex cit ed A ug er-ele tron spe tra, ene g shifs of
A ug er p ramet ers ( i.e kinetic -ene g dife enc s between A ug er-ele tron peaks an the phot oele tron
peakscor esp n ing t o the cor levels involved in the A ug er-ele tron proc s ) can be det ect ed as wel
Furthe mor , the lne sha e, the r lative int ensity and the sat el t e s ructur ( in uc d b the intrinsic
Trang 8ex citation proc s es) of the A ug er-ele tron l nes can be conside a ly influenc d b chemical efe t ,
as can the s ructur of the ene g -los r gion ( in uc d b extrinsic, ele tron-scatt ering proc s es)
ac omp nying the intrinsic peaks Strong chemical efe t on the A ug er-ele tron spe tral sha es ofe
way s of identification of chemical spe ies using the “fing erprint” a pro ch
In the case of ele tron-ex cit ed A ug er-ele tron spe tra, the A ug er peaks ar g ene aly weak featur s
supe imp sed on an int ense backgroun caused t o a larg e ext ent b the primary ele trons scatt er d
inelas icaly within the sol d sample As a conseq enc , the dife ential A ug er-ele tron spe trum is
oft en r corded (or calculat ed from the measur d spe trum) rathe than the dir ct ene g spe trum,
faci itating the o se v tion an identification of the A ug er-ele tron peaks an the measur ment of the
r spe tive A ug er transition ene gies Dife entiation can, howeve , enhanc the visibi ity of ran om
fluctuations in r corded int ensities, as shown in Figur 1 If chemical-s at e information is ne ded from
a dir ct ene g spe trum, then the r lative ene g r solution of the ele tron spe tromet er should be
bett er than 0,1 % (e.g 0,0 % or 0,0 % ) A p or r ene g r solution causes a significant bro dening
of the A ug er-ele tron peaks and pr vent o se v tion of smal chang es of spe tral lne sha es or peak
ene gies as chemical-s at e efe t in the spe tra A gr at adv ntag e of ele tron-ex cit ed A ug er-ele tron
spe trosco y o e X-ra ex citation with la orat ory X-ra sour e, however, is the p s ibi ity of using
high lat eral r solution an o taining chemical-s at e ma s of surfac nanos ructur s
NOTE 1 A ug er -electron spectra can b report ed with the energy s ale referenced either to the Fermi level or
t o the vacu m level Kinetic energies with the latt er reference are ty icaly 4,5 e V les than those referenced to
the F ermi level, but the diference in energies for these two references can vary from 4,0 e V to 5,0 e V since the
position of the vacu m level depen s on the con ition of the spectromet er an may, in practice,vary with respect
t o the Fermi level When energy shif s are det ermined from spectra recorded on diferent instruments, use of
diferent energy references should b taken int o ac ou t
NOTE 2 While the visibility of noise fe tures in a diferential spectrum can b red ced by use of a larg r
n mb r of chan els in the calculation of the derivative, there may also b dist ortion of the resulting diferential
spectrum an los of f ine details as ociat ed with chemical-stat e efects
Key
X kinetic ener g y, eV
Y intensity
1 difer ential spectrum
2 dir ect spectrum
NOTE This f igure is reprod ced from Figure 2.8of R eference [1]
Figure 1 — C mparison of direct and dif erentiat ed A ug r-electro spectra for co per (Cu
LMM pe ks)
Trang 96 Chemical efects arising fr om core-level Aug er -electron transitions
Cor -level (or cor -cor -cor , CC ) A ug er-ele tron transitions oc ur w hen al of the levels inv lved in
the A ug er transition belong t o the at omic cor for the at om of int er s
6.2 Chemical shif s of Aug er-electron ener g ies
The main efe t ofany chang e in the sold-s at e environment on A ug er-ele tron spe tra for A ug er
transitions inv lving cor levels is a shif of the Aug er ene gies This shif r sult from a chang e in the
cor at omic pot ential d e t o the chang ed environment an from a contribution d e t o the r sp nse of
the local ele tronic s ructur t o the a pearanc of cor holes A ug er chemical shif s ar g ene aly larg er
than the bin ing -ene g shifs of the at omic levels inv lved in the A ug er-ele tron proc s be a use the
two-hole final s at e ofthe proc s is mor s rongly influenc d b r la ation efe t This phenomenon is
i lus rat ed b the ex mple of aluminium an it o ide in Figur 2
[6]
L rg e chemical shif s in the ene g
positions of the A ug er-ele tron lnes pro ide p s ibi ties for chemical-s at e identification even in the
case of ele tron-ex cit ed A ug er-ele tron spe trosco y with, in this case, mode at e ene g r solution In
X-ra -excit ed A ug er-ele tron spe tra, the peak-t o-backgrou d int ensity ratios ar usualy larg er than
those in ele tron-excit ed spe tra, faci tating ac urat e det ermination of peak ene gies R ecommen ed
A ug er ele tron ene gies ar av aia le for 42 elemental sol ds
[7]
Information on A ug er chemical shif s of
particular element can be o tained from han b oks
Figure 2 — Photoelectro and A ug er-electro spectra of an aluminium foi co ered b a thin
o erlayer of aluminium o ide: Ex citatio with Al and Mo X-ray s
Trang 10W ith the adv ntag e of high-ene g -r solution analy se s, smal chemical shif s of A ug er-ele tron lnes
d e t o dife ent y e of do ant in semicon uct ors be ome disc rnible (for ex mple, the kinetic -ene g
dife enc betwe n Si KL peaks from n-ty e an p-ty e si icon is 0,6 e V
[1]
), alowing chemical-s at e
ma ping in spit e of the extr mely low conc ntration (far below the det ection lmit of A ug er ele tron
spe trosco y) of the do ant Figur 3 shows a Si KL A ug er-ele tron ma de ived from a c os se tion
of a p-ty e si icon sample do ed with phosphorus b implantation t o o tain n-ty e Si at the sample
NOTE 2 T is f igure has b en reprod ced from Figure 5.3 of R eference [1]
Figure 3— Si ico KLL A ug er-electro map of a p-ty e si ico sample implanted with
ph sp orus to pro uce n-ty e Si at its surface
6.3 Chemical shif s of Aug er parameter
A ug er p ramet ers, o tained from X-ra -ex cit ed A ug er-ele tron spe tra, can also be s rongly influenc d
b the environment of the at om emit ing phot oele trons an A ug er ele trons
[2][14][1 ][16][17][18]
The
A ug er paramet er, α, is given b F ormula (1):
Trang 11α =KE(jkl)−KE(i) (1)
w he e
KE(jkl is the kinetic ene g of an A ug er transition inv lving cor levelsj, k a d l of an at om;
KE(i is the kinetic ene g of a phot oele tron from cor level i (w hich ma be the same as the
cor level j
In orde t o a oid neg tive v lues of the A ug er p ramet er
[14][1 ][16]
themodified A ug er p ramet er, α′ is
used in mos practical cases The modif ied A ug er paramet er is given b F ormula (2):
is the ex citing phot on ene g ;
BE(i is the bin ing ene g of an ele tron in the cor level i
It is also pr fe a le t o use α′rathe than α be ause the v lue of α′is in epen ent of E
p
The A ug er p ramet ers can be measur d even in the case of s atic charging, sinc any charging shif is
canc led as ene g sep rationsof peaks ar det ermined No ene g -r fe encing pro lems oc ur
[14][1 ]
in the case of measuring A ug er paramet ers; i.e data o tained using the v cu m level asr fe enc can be
comp r d dir ctly t o data o tained using the F ermi level as r fe enc A ug er p ramet ers can the efor
be ve y useful in the charact erization of insulat ors an semicon uct ors, w he e the ene g p sition of
the F ermi level of the sample is not wel defined A chang e in the at omic environment of a cor -ioniz d
at om can r sult in a chemical shif of the cor espon ing A ug er p ramet er A ug er-paramet er shif s
depen on dife enc s in the v lenc charg e in the initial grou d s at e an in the f inal s at e (
intra-at omic contribution), as wel as on dife enc s in the contribution t o the r la ation proc s of al othe
at oms in the sy st em (extra-at omic contribution)
[16]
When the intra-at omic contribution is dominant, a local sc e ning me hanism of the cor hole takes
plac , w hie in the case w hen the extra-at omic contribution is dominant, the sc e ning me hanism is
as umed t o be non-local In the latt er case, simple ele tros atic models can be used for es imating the
ele tronic polarization ene g
[5][16][17][18][1 ][2 ]
The model of Mor t i
16]
desc ibes the f inal-s at e
polarization proc s in w hich the sum of the ele tric f ields (at the lg n s) is g ene at ed b the c ntral
positive charg e an b in uc d dip les on the lg n s in the f irs co rdination shel This model can be
a pl ed t o es imat e the extra-at omic p larization ene g an the A ug er-p ramet er shif s Calculation
of A ug er paramet er shif s using the ele tros atic model of Mor t i is faci itat ed b the p s ibi ty of
a plying the fr ely a aia le Tinker mole ular model ng an Molden comput er gra hic sof war
packag es
[18]
Weightman, et al
[2 ][2 ]
develo ed a dife ent model, the “ext ended p t ential model” ,
for es imating the A ug er-paramet er chemical shift ; pot ential p ramet ers we e de ived from at omic
calculations an theangular-momentum charact er of the ele trons was taken int o ac ou t This model
gives a g ood a pro imation in the case of larg e charg e trans e in the final s at e (con uct ors), w he e
the ele tros atic model is not a plca le, an desc ibes wel the local sc e ning me hanism In thecase
of binary aloy s, thema nitu e of the trans e r d charg e can be ac urat ely de ived
[3]
A r view on firs
principles calculations of A ug er kinetic ene g an A ug er paramet er shif s in metal ic bulk solds from
the density functional theory ar discus ed in R efe enc
[2 ]
In the case of nano articles, the A ug er p ramet er can depen on the siz of the p rticles Figur 4
show s the depen enc of the A ug er p ramet er of Cu nanoclust ers [deposit ed b ev p ration ont o highly
orient ed pyroltic gra hit e (HOPG)] on the nominal thick es of the Cu la e
[24]
It was fou d that the
Cu A ug er paramet er depen s lnearly on 1 d, w he e d is the a e ag e diamet er of the Cu clust ers
[24]
Trang 12NOTE S e Figure 2of R eference
[2 ]
Figure 4 — Dependence of the Cu A ug er parameter o the nominal thicknes of the C laye
co sisting of C cluster deposited by evap ratio o to HOPG surface
6.4 Chemical state plots
F or chemical-s at e identif ication an A ug er-p ramet er analy sis, the pr sentation of A ug er p ramet ers
in the form of a two-dimensional plot, as pro osed b Wa ne , pro ed t o be ve y useful
1 ]
The A ug
er-ele tron kinetic ene g is in icat ed on the ordinat e of the plot an the cor esp n ing phot oele tron
bin ing ene g is on the a scis a but orient ed in the neg tive dir ction, as shown in Figur 5; cons ant
A ug er-p ramet er v lues ar r pr sent ed on the plot b a s raight lne with a slo e of – (not e that the
a scis a a is in Figur 5 is inc easing t o the lef) In the case of a neglgible chang e in the intra-at omic
r la ation ene g (d e t o the v rying at omic environment), the chang e in the extra-at omic -r la ation
( final-s at e-efe t) ene g dominat es, an comp nent with highe extra-at omic r la ation ene g
le in the up e part of the chemical-s at e (or Wa ne ) plot On the othe han , w hen the initial-s at e
efe t (pro ortional t o the sum of t erms r lat ed t o the groun -s at e v lenc charg e an the Madelu g
pot ential) dominat e, the slo e be omes – on the chemical-s at e plot ; i.e chemical s at es with simiar
initial-s at e efe t le on s raight lnes with a slo e of – This r sult i lus rat es that chemical-s at e
plot can be analy sed t o pro ide information on the natur of the chang es in the environment of the
chemical-s at e plot can help t o dis inguish between chemical s at es not sep ra le on the b sis of cor
-level bin ing ene g shif s or A ug er-ele tron-ene g shifsalone
Trang 13X Sn 3d
5 2bin ing energ y,eV
Aug er parameter +p oton ener g y
NOT R eprinted from R eference
[2 ]
Figure 5 — Chemical state plot for tin comp unds
6.5 Databases of chemical shif s of Aug er -electron ener g ies and Aug er parameter s
The f irs compr hensive set ofc itical y cole t ed data on A ug er p ramet ers, A ug er-ele tron kinetic
ene gies an phot oele tron binding ene gies for seve al element is foun in R efe enc
[1 ]
A han b ok
contains a cole tion of ex e imental phot oele tron bin ing -ene g an A ug er-ele tron kinetic -ene g
data for a larg e n mbe of comp un s
[8]
an inclu es seve al chemical-s at e plot The lat es ve sion
of the US National Ins itut e of S ienc an Te h olo y XPS Data ase
[1 ]
pro ides onlne ac es t o
o e 3 0 0 r cords of phot oele tron an A ug er-ele tron data inv lving int ense transitions for mos
element an many comp u ds This data ase sup les A ug er p ramet ers, has the o tion of displa ing
chemical-s at e plot , and is ve y useful for identif ication of chemical s at e as wel as in s u ies of the
depen enc of polarization ene g on chemical s at e A ug er-p ramet er v lues for 42 elemental solds
ar r commen ed in R efe enc
[26]
6.6 Chemical efects on Aug er-electron satel ite structures
A ug er-ele tron peaks can be ac ompanied b sat el it e lnes d e t o intrinsic ex citations These
ex citations ar oft en of at omic origin As a conseq enc of the c eation of the cor hole, ele trons can
Trang 14be ex cit ed from oc upied levels t o u oc upied s at es ( hake-up) or t o the contin um ( hake-of ); the
A ug er-ele tron proc s then takes plac in an ex cit ed or multiply ioniz d at om Not e that not only the
shake-up but the shake-of proc s r sult in a pearanc of sat el t es in A ug er-ele tron spe tra, in
contras t o phot oele tron lnes w he e the shake-of proc s in uc s a contin ous ene g contribution
t o the spe trum The ex cit ed ele tron can be eithe a spe tat or or a p rticip t or in r lation t o the
A ug er transition In this latt er case, the ene g of the A ug er sat el it e can be even highe than that of
the main l ne Figur 6 show s an extra rdinariy int ense sat el t e oc ur ing in the F KL spe trum of
p lyc y stal ine KF ; this sat el it e is int erpr t ed as a r sonanc betwe n the groun s at e an the cor
-ioniz d s at e
[27]
C upl ng of u pair d spins in the ioniz d cor level an in the out er shel leads t o
multiple splt ing of A ug er lnes;these splt ings can be afe t ed b chang esin the at omic environment
as wel
Key
X kinetic ener g y, eV
Y intensity
Figure 6 — S telite structure (designated by ar ow s) in fluorine KL A ug er-electron spectra
of flu rides
6.7 Chemical ef ect s on t he relat ive intensit ies and l ne shapes of CCC A
uger-elect ron l nes
The r lative int ensities of C C A ug er-ele tron transitions ma chang e as a r sult of dife ent A ug
er-transition pro a i ities in dife ent at omic environment
[28][2 ]
Ve y fas C st er-Kronig (CK) proc s es
taking plac prior t o a p rticular A ug er transition can conve t the initial cor hole int o a v cancy in a
cor level with a smale bin ing ene g , leading t o a conside a le chang e in the r lative int ensities of
Trang 15A ug er transitions inv lving levels that p rticip t ed in the CK proc s The pro a i ity of these CK
proc s es can s rongly depen on the chemical environment
[3 ]
In the case of some metals, C C A ug er
l ne sha escan be s rongly asymmetric d e t o ele tron-hole p ir ex citation in the con uction b n
[3 ]
F or adsorb t es, a conside a le bro dening of the A ug er-ele tron lne can oc ur as a conseq enc of
phonon ex citation b the a pearanc of the cor hole
[3 ]
6.8 Chemical efects on the inelastic reg ion of CCC Aug er -electron spectra
Strong v riations in the ene g -los s ructur of A ug er-ele tron spe tra can be o se ved, folowing
chang es of chemical s at e, e.g in the case of some fr e-ele tron metals an their comp un s Figur 7
show s the dife enc betwe n the KL A ug er spe tra of metal c Al an Al
2O
3[34]
R efle tion Ele tron
Ene g L s Spe trosco y (REELS) can be used t o conf irm an sep rat e chemical-s at e-depen ent
ene g -los s ructur s in A ug er-ele tron spe tra On the othe hand, the int erpr tation of REELS
spe tra of multi-comp nent syst ems can be conf irmed b the surfac chemical comp sition, o tained
from q antitative A ug er analy sis
Figure 7 — Aluminium KL A ug er-electron spectra o tained by photo-ex citatio with Zr X-ray s
from an o idized sample (lowe curve)and after various times of io sputt ering to remo e the
o ide (uppe curves)
Trang 167 Chemical efects on Aug er -electron transitions invol ving valenc e electrons
In the case of A ug er transitions inv lving v lenc ele trons, the A ug er-ele tron l ne sha es ar ex e t ed
t o chang e d e t o chang es in chemical s at e The det ection of these lne sha e chang es ma r q ir high
(bett er than 0,5 % )r lative ene g r solution, although the chang esar o se v ble at mode at e ene g
r solution in many cases
7.2 Chemical state-dependent l ne shapes of CCV and CVV Aug er-electron spectra
The l ne sha es ofcor -cor -v lenc (C V) an cor -v lenc -v lenc (CVV) A ug er-ele tron spe tra can
depend s rongly on theenvironment ( i.e the chemical s at e) of the at oms emit ing the A ug er ele trons
This efe t can be uti iz d for fing erprinting, i.e for identif ication of chemical s at e Early measur ment
of carb n CVV A ug er-ele tron spe tra showed o vious dife enc s in l ne sha es for gra hit e, diamon ,
metal carbides and carb n mono ide adsorbed on a metal surfac
[36][37]
Figur 8 show s ele
tron-ex cit ed Si L
2
VV A ug er-ele tron spe tra of sold si con an of v rious si con comp u ds that show
conside a le dife enc s in lne sha es
[38][3 ]
Figur 9shows P M
45N
45N
45
A ug er-ele tron spe tra for
dife ent Cu-P an Ag -P alo s
VV A ug er-electro spectra in the dif erential mo e for sol d si ico an
vario s si ico compo n s