Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′
; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1
V2
A. V1
V2 = 1
V1
V2 = 1
V1
V2 = 1
V1
V2 = 1
Câu 2 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450
A C(1; 5; 3) B C(5; 9; 5) C C(−3; 1; 1) D C(3; 7; 4).
Câu 3 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 4 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
1
1
6.
Câu 5 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z
Giá trị của biểu thức A = xy + yz + zxbằng?
Câu 6 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 7 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.
Tính thể tích của khối trụ
Câu 8 Tìm nghiệm của phương trình 2x = (√3)x
Câu 9 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1
2 Giá trị của u3bằng
1
7
2.
Câu 10 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 11 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên)
Thể tích khối chóp đã cho bằng
Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (2; 4; 6) B (1; 2; 3) C (−1; −2; −3) D (−2; −4; −6).
Câu 13 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2
0 f(2x) bằng
3
Trang 2Câu 14 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
2 + C
C.R f(x)= sinx + x2
Câu 15 Trong không gian Oxyz, cho đường thẳng d : x −1
−1 = z+ 3
−2 Điểm nào dưới đây thuộc d?
A Q(1; 2; −3) B M(2; −1; −2) C N(2; 1; 2) D P(1; 2; 3).
Câu 16 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 17 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2
A |z1+ z2|= 5 B |z1+ z2|= 1 C |z1+ z2|= √13 D |z1+ z2|= √5
Câu 18 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là3 và phần ảo là 2 B Phần thực là −3 và phần ảo là−2.
C Phần thực là−3 và phần ảo là −2i D Phần thực là 3 và phần ảo là 2i.
Câu 19 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là
Câu 20 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 21 Số phức z= 1+ i
1 − i
!2016 + 1 − i
1+ i
!2018 bằng
Câu 22 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= 4√5 B |w|= √48 C |w|= √85 D |w|= 6√3
Câu 23 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 24 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?
Câu 25 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2
z1
là
Câu 26 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên
[a; b] Mệnh đề nào dưới đây đúng?
A Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)
B. Rb
a k · f(x)= k[F(b) − F(a)]
C.Rab f(2x+ 3) = F(2x + 3)
b
a
D.Ra
b f(x)= F(b) − F(a)
Câu 27 Tích phân I = R2
0 (2x − 1) có giá trị bằng:
Trang 3Câu 28 Biết
1 R
0
3x − 1
x2+ 6x + 9 dx = 3ln
a
b −
5
6, trong đó a, b nguyên dương và
a
b là phân số tối giản Hãy tính ab
4.
Câu 29 F(x) là một nguyên hàm của hàm số y= xex2 Hàm số nào sau đây không phải là F(x)?
A F(x)= 1
2e
x 2
+ 2 B F(x)= −1
2e
x 2
+ C C F(x) = 1
2(e
x 2
+ 5) D F(x)= −1
2(2 − e
x 2
)
Câu 30 Giá trị củaR0
−1ex+1dxbằng
Câu 31 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số
A f (x)= −2023cos(2023x) B f (x)= − 1
2023cos(2023x).
C f (x)= cos(2023x) D f (x)= 2023cos(2023x)
Câu 32 Hàm số f (x) thoả mãn f′(x)= xxlà:
A x2 x+ C B x2+ x+1
x+ 1 + C. C (x − 1)x+ C. D (x+ 1)x+ C.
Câu 33 Phương trình mặt phẳng đi qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n= (−2; 1; −1) là
A −2x + y − z + 4 = 0 B −2x + y − z + 1 = 0 C 2x + y − z − 4 = 0 D −2x + y − z − 4 = 0.
Câu 34 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8
3.
Câu 35 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
A |z|= 4 B |z|= 1
Câu 36 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
√ 2
1
5.
Câu 37 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 38 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
1
2.
Câu 39 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A Phần thực của z là số âm B z là số thuần ảo.
C z là một số thực không dương D |z|= 1
Câu 40 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2 Tính giá trị biểu thức P=
z1 z2
+
z2 z1
3√2
2 .
Trang 4Câu 41 Cho z1, z2, z3là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|
Câu 42 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 2
C (x − 1)2+ (y − 2)2+ (z − 4)2 = 3 D (x − 1)2+ (y + 2)2+ (z − 4)2= 1
Câu 44 Đồ thị hàm số y= 2x −
√
x2+ 3
x2− 1 có số đường tiệm cận đứng là:
Câu 45 Cho hình lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′
A′) và (ACC′
A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′
B′C′
A 6a3√
3
Câu 46 Tính đạo hàm của hàm số y= 5x +cos3x
A y′ = 5x +cos3xln 5. B y′ = (1 − 3 sin 3x)5x +cos3xln 5.
C y′ = (1 − sin 3x)5x +cos3xln 5. D y′ = (1 + 3 sin 3x)5x +cos3xln 5.
Câu 47 Cho m= log23; n= log52 Tính log22250 theo m, n
A log22250= 3mn+ n + 4
C log22250= 2mn+ n + 3
Câu 48 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Câu 49 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 500π
√
3
400π√3
125π√3
250π√3
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm
A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)
A 2x+ y − 4z + 1 = 0 B −2x − y+ 4z − 8 = 0
C 2x+ y − 4z + 7 = 0 D 2x+ y − 4z + 5 = 0
Trang 5HẾT