Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hàm số y = ∣∣∣∣∣x∣∣∣∣∣3−mx+5 Hỏi hàm số đã cho có thể có nhiều nhất[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001
Câu 1 Cho hàm số y=
x
3
− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị
Câu 2 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
Câu 3 Cho hình hộp chữ nhật ABCD.A′
B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′
√ 3
a
√ 2
a
√ 3
2 .
Câu 4 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt
A [22;+∞) B [7
4; 2]S[22;+∞) C (7
4;+∞)
D (7
4; 2]S[22;+∞)
Câu 5 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 6 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1
(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim
t→ +∞S(t).
A − ln 2 −1
1
1
2.
Câu 7 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?
Câu 8 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 9 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB = a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng
A. a
3
3
3 .
Câu 10 Tính đạo hàm của hàm số y= 5x
A y′= 5xln 5 B y′ = 5x
′ = x.5x−1 D y′ = 5x
Câu 11 Cho hàm số y= f (x) có bảng biến thiên như sau
Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?
Câu 12 Cho hai số phức u, v thỏa mãn
u
= v
= 10 và
3u − 4v
= 50 Tìm giá trị lớn nhất của biểu thức
4u+ 3v − 8 + 6i
Trang 2
Câu 13 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x≥ log5(x+ y2)?
Câu 14 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng
(S BD) theo a
A. a
√
2
√
2.
Câu 15 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là
Câu 16 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng
Câu 17 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?
A z2+ (1 + 4i)z − 9 + 7i = 0 B z2− (1+ 4i)z + 9 − 7i = 0
C z2− (5 − 2i)z+ 9 − 7i = 0 D z2+ (5 − 2i)z − 9 + 7i = 0
Câu 18 Phương trình (2 − i)z+ 3(1 + iz) = 7 + 8i có nghiệm là
Câu 19 Căn bậc hai của -4 trong tập số phức là.
A 2i hoặc -2i B không tồn tại C 2 hoặc -2 D 4i.
Câu 20 Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2+ bz + c = 0 (với
a, b ∈ R ) Khi đó tổng a + b + c bằng bao nhiêu?
Câu 21 Tổng nghịch đảo các nghiệm của phương trình z4− z3− 2z2+6z−4 = 0 trên tập số phức bằng
A. 1
1
3
3
2.
Câu 22 Gọi z1, z2là hai nghiệm phức của phương trình 2(1+i)z2−4(2−i)z−5−3i= 0 TổngT = |z1|2+|z2|2 bằng bao nhiêu?
A T =
√
13
4 .
Câu 23 Biết z= 1 + 2i là một nghiệm phức của phương trình z2+ (m − 1)z + m − 1 = 0 (m là tham số phức) Khi đó phần ảo của m bằng bao nhiêu?
A. 3
7
3
7
4.
Câu 24 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?
Câu 25 Cho phương trình bậc hai az2+ bz + c = 0 (với a, b, c ∈ R) Xét trên tập số phức, trong các khẳng định sau, đâu là khẳng định sai?
A Phương trình đã cho có tổng hai nghiệm bằng −b
a .
B Phương trình đã cho luôn có nghiệm.
C Phương trình đã cho có tích hai nghiệm bằng c
a.
D Nếu∆ = b2− 4ac < 0 thì phương trình đã vô nghiệm
Câu 26 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Câu 27 Tập nghiệm của bất phương trình 2x +1< 4 là
Trang 3Câu 28 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 29 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)
Khoảng cách từ B đến mặt phẳng (S CD) bằng
A. 2
√
3
√ 2
√
√ 3
3 a.
Câu 30 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; 2; −3) B (1; −2; 3) C (−1; −2; −3) D (−1; 2; 3).
Câu 31 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
1
3.
Câu 32 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
A. 4
9
1
18
35.
Câu 33 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1
2 Giá trị của u3bằng
1
1
4.
Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 35 Cho số phức z thỏa mãn1 −
√ 5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 1
2 < |z| < 2 B. 5
2 < |z| < 4 C. 3
2 < |z| < 3 D 3 < |z| < 5.
Câu 36 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 37 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
2.
Câu 38 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|
Câu 39 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 40 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
Trang 4√
2
1
1
2.
Câu 41 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min = 1 B |w|min = 3
2. C |w|min = 2 D |w|min= 1
2.
Câu 42 Gọi z1; z2 là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 43 Biết
3 R 2
f(x)dx= 3 vàR3
2
g(x)dx= 1 Khi đóR3
2 [ f (x)+ g(x)]dx bằng
Câu 44 Cho hàm số y= f (x) có bảng biến thiên như sau :
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 45 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (−2; 3; 1) B.→−n = (−2; 3; 4) C.→−n = (2; −3; 4) D.→−n = (2; 3; −4)
Câu 46 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là
A C3
30
Câu 47 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= 3
5 −
6
5 + 6
5+ 27
5 −
27
5 i.
Câu 48 Tính đạo hàm của hàm số y= 2023x
A y′ = x.2023x−1 B y′ = 2023x
ln x C y′ = 2023x
ln 2023
Câu 49 Thể tích khối lập phương có cạnh 3a là:
Câu 50 Đường thẳng (∆) : x −1
−1 không đi qua điểm nào dưới đây?
A (1; −2; 0) B (−1; −3; 1) C (3; −1; −1) D A(−1; 2; 0).
HẾT