Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d x = 1 + 2ty = 2 +[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
Câu 2 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′
A. a
3
a3
a3
a3
6.
Câu 3 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.
Tính thể tích của khối trụ
Câu 4 Đạo hàm của hàm số y= log√
2
3x − 1
là:
A y′= 2
3x − 1
ln 2
(3x − 1) ln 2. C y
′ = 6 3x − 1
ln 2
(3x − 1) ln 2.
Câu 5 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 6 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)
A (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 3 B (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 1
3.
C (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 1
3. D (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 3
Câu 7 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
A. 2
1
1
Câu 8 Cho hình hộp chữ nhật ABCD.A′
B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′
A. a
√
3
a
√ 2
√
√ 3
2 .
Câu 9 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (1; 2; 3) B (2; 4; 6) C (−1; −2; −3) D (−2; −4; −6).
Câu 10 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn
z1
+
z2
= 2?
Câu 11 Cho hàm số y = f (x) có đạo hàm f′
(x)= (x − 2)2
(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 12 Tập nghiệm của bất phương trình 2x +1< 4 là
Trang 2Câu 13 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 14 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
3
2.
Câu 15 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Câu 16 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x2− 4x+ 1 B y= x4− 3x2+ 2 C y= x −3
Câu 17 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 18 Số phức z= 1+ i
1 − i
!2016 + 1 − i
1+ i
!2018 bằng
Câu 19 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 20 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 21 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= 6√3 B |w|= √48 C |w|= √85 D |w|= 4√5
Câu 22 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
z. D z là số thuần ảo.
Câu 23 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 24 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= −21009 B (1+ i)2018 = −21009i C (1+ i)2018 = 21009 D (1+ i)2018 = 21009i
Câu 25 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 26 F(x) là một nguyên hàm của hàm số y= xex2 Hàm số nào sau đây không phải là F(x)?
A F(x) = −1
2e
x 2
+ C B F(x) = −1
2(2 − e
x 2
) C F(x)= 1
2(e
x 2
+ 5) D F(x)= 1
2e
x 2
+ 2
Trang 3Câu 27 Tìm nguyên hàm của hàm số f (x)= √ 1
2x+ 1.
A.R f(x)dx= 1
2
√
2x+ 1 + C.
Câu 28 Cho hàm số f (x) liên tục trên khoảng (−2; 3) Gọi F(x) là một nguyên hàm của f (x) trên khoảng
(−2; 3) Tính I = R2
−1[ f (x)+ 2x], biết F(−1) = 1 và F(2) = 4
Câu 29 ChoR01 f(x)= 2Rv `a R1
0 g(x)= 5 R1
0 [ f (x) − 2g(x)] bằng
Câu 30 BiếtR8
1 f(x)= −2; R4
1 f(x)= 3; R4
1 g(x)= 7 Mệnh đề nào sau đây sai?
A.R8
1 [4 f (x) − 2g(x)]= −2
C.R8
1 [ f (x)+ g(x)] = 10
Câu 31 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương
trình
A x − 2y+ 2z + 15 = 0 B x+ 2y + 2z + 15 = 0
Câu 32 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng
A F(x)= f′
(x)+ C B F(x)= f′
(x) C F′(x)+ C = f (x) D F′(x)= f (x)
Câu 33 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng
(ABC) có phương trình là
A x − y+ z + 6 = 0 B x+ y − z + 1 = 0 C 6x + y − z − 6 = 0 D x + y − z − 3 = 0.
Câu 34 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 1
3
Câu 35 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|
Câu 36 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1 B |w|min= 1
2. C |w|min = 2 D |w|min = 3
2.
Câu 37 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 38 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2 Tính giá trị biểu thức P=
z1 z2
+
z2 z1
A. √1
√
√ 2
2 .
Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Trang 4Câu 40 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 1
2 < |z| < 2 B 3 < |z| < 5 C. 5
2 < |z| < 4 D. 3
2 < |z| < 3
Câu 41 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 42 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 43 Cho hình lăng trụ đứng ABCD.A′
B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α
A.
√
3
√ 3
√ 5
1
2.
Câu 44 Biết
π 2 R
0 sin 2xdx= ea
Khi đó giá trị a là:
Câu 45 Chọn mệnh đề đúng trong các mệnh đề sau:
A.
3
R
1
|x2− 2x|dx =R2
1
|x2− 2x|dx −
3 R
2
|x2− 2x|dx
B.
3
R
1
|x2− 2x|dx =R2
1 (x2− 2x)dx −
3 R
2 (x2− 2x)dx
C.
3
R
1
|x2− 2x|dx =R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
D.
3
R
1
|x2− 2x|dx = −R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
Câu 46 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Câu 47 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3
√ 2
2 Giả sử phương trình mặt phẳng (P) có dạng
ax+ by + cz + 2 = 0 Tính giá trị abc
Câu 48 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= −x4+ 2x2 B y= −2x4+ 4x2 C y= −x4+ 2x2+ 8 D y= x3− 3x2
Câu 49 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Câu 50 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1
x+ 1 đạt cực tiểu tại điểm x= 0.
Trang 5HẾT